SwiftMPI API Reference
Function Reference with Usage Examples

Swift MPI Documentation

2025

Contents

1 Initialization and Finalization

1.1 SwiftMPLinitialize()

Initialize MPI environment without command line arguments.
Usage:

import SwiftMPI

do {
try SwiftMPI.initialize ()

} catch {
print ("MPI_ initialization,failed: \(error)")

}

1.2 SwiftMPLinitialize(argc:argv:)

Initialize MPI environment with command line arguments.
Usage:

import SwiftMPI

let argc = CommandLine.argc
let argv CommandLine.unsafeArgv

do {

try SwiftMPI.initialize (argc: argc, argv: argv)

} catch {
print(”MPIUinitializationufailed:u\(error)")

3

1.3 SwiftMPI.finalize()

Finalize MPI environment and clean up resources.
Usage:

import SwiftMPI

do {
try SwiftMPI.finalize ()

} catch {
print ("MPI finalizationfailed: \(error)")

}

1.4 SwiftMPIL.wtime()

Get wall clock time in seconds since arbitrary time.
Usage:

import SwiftMPI

SwiftMPI.wtime ()

let startTime

let endTime = SwiftMPI.wtime ()

6| let elapsed = endTime - startTime
7| print ("Computation took,\(elapsed) seconds")

1.5 SwiftMPI.wtick()

Get resolution of MPI Wtime in seconds.
Usage:

1| import SwiftMPI

N

31 let resolution = SwiftMPI.wtick ()
print ("Time_ resolution: \(resolution) seconds")

1.6 SwiftMPI.world

Get world communicator containing all processes.
Usage:

1| import SwiftMPI

31 let comm = SwiftMPI.world

4/let rank = comm.rank ()

5| let size = comm.size ()

6| print ("Process_\(rank) of ,\(size)")

1.7 SwiftMPI.abort(comm:errorCode:)

Abort all MPI processes with specified error code.
Usage:

1| import SwiftMPI

¥

if someErrorCondition {

4 SwiftMPI.abort(comm: SwiftMPI.world, errorCode:

1)

2 Communicator Operations

2.1 Communicator.rank()

Get rank of current process in this communicator.
Usage:

=

import SwiftMPI

N

let comm = SwiftMPI.world
let myRank = comm.rank ()
s|print ("My_,rank,is,\(myRank)")

[V}

w

N

~

2.2 Communicator.size()

Get number of processes in this communicator.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
let totalProcesses = comm.size ()
print ("Total processes: \(totalProcesses)")

2.3 Communicator.duplicate()

Duplicate this communicator creating new independent communicator.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
do {
let newComm = try comm.duplicate ()

} catch {
print ("Failed, to,duplicate communicator: \(error)")

}

2.4 Communicator.free()

Free this communicator and release associated resources.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
do {
try comm.free ()

} catch {
print ("Failed, to,free communicator:,\(error)")

}

3 Point-to-Point Communication

3.1 Communicator.send(_:count:datatype:dest:tag:)

Blocking send operation sending data to destination process.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
let rank comm.rank ()
let data: [Int32] = [1, 2, 3, 4, 5]

w N

try data.withUnsafeBufferPointer { buffer in
try comm.send(buffer, count: data.count,
datatype: .int, dest: 1, tag: 0)
}
print ("Sent data to, process 1")
} catch {
print ("Send, failed: ,\(error)")
}

3.2 Communicator.receive(:count:datatype:source:tag:)

Blocking receive operation receiving data from source process.
Usage:

import SwiftMPI

let comm = SwiftMPI.world

let rank = comm.rank ()

if rank == 1 {
var buffer = [Int32] (repeating: 0O, count: 5)
do {

let status = try buffer.withUnsafeMutableBufferPointer { buf in

try comm.receive (buf, count: 5, datatype: .int,
source: 0, tag: 0)

}

print ("Received \(status.elementCount) elements from process
\(status.source)")

print ("Data: \(buffer)")

} catch {
print ("Receivefailed: \(error)")

}

3.3 Communicator.send(_:to:tag:) - Convenience for Int32

Send array of integers to destination process.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
let data: [Int32] = [10, 20, 30]

do {
try comm.send(data, to: 1, tag: 0)
print ("Sent integer array")

} catch {
print ("Send failed: \(error)")

}

3.4 Communicator.receive(count:from:tag:) - Convenience for Int32

Receive array of integers from source process.
Usage:

N

import SwiftMPI

let comm = SwiftMPI.world

do {
let received = try comm.receive(count: 3, from: 0, tag: 0)
print ("Received: \(received)")

} catch {

print ("Receivefailed: \(error)")

}

3.5 Communicator.send(_:to:tag:) - Convenience for Double

Send array of doubles to destination process.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
let data: [Double] = [3.14, 2.71, 1.41]

do {
try comm.send(data, to: 1, tag: 1)
print ("Sent doublearray")

} catch {
print ("Send failed: \(error)")

}

3.6 Communicator.receiveDoubles(count:from:tag:)

Receive array of doubles from source process.
Usage:

import SwiftMPI
let comm = SwiftMPI.world

do {

let received = try comm.receiveDoubles (count: 3, from: 0, tag:

print ("Received doubles: \(received)")
} catch {
print ("Receive failed: \(error)")

}

1)

4 Non-blocking Communication

4.1 Communicator.isend(_:count:datatype:dest:tag:)

Non-blocking send operation initiating asynchronous send.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
let data: [Int32] = [1, 2, 3, 4, 5]

w N

do {
let request = try data.withUnsafeBufferPointer { buffer in
try comm.isend(buffer, count: data.count,
datatype: .int, dest: 1, tag: 0)

}
let status = try request.wait ()
print ("Send completed")

} catch {

print ("Isend failed: \(error)")

}

4.2 Communicator.ireceive(:count:datatype:source:tag:)

Non-blocking receive operation initiating asynchronous receive.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
var buffer = [Int32](repeating: 0, count: 5)

do {
let request = try buffer.withUnsafeMutableBufferPointer { buf in
try comm.ireceive (buf, count: 5, datatype: .int,
source: 0, tag: 0)
X
let status = try request.wait ()
print ("Receive completed: \(buffer)")
} catch {

print ("Ireceive, failed: \(error)")

}

4.3 Request.wait()

Wait for this request to complete and return status.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
let data: [Int32] = [1, 2, 3]

do {
let request = try comm.send(data, to: 1, tag: 0)

let status = try request.wait()
print ("Request completed")
} catch {
print ("Wait failed: \(error)")
}

N

4.4 Request.test()

Test if this request has completed without blocking.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
let data: [Int32] = [1, 2, 3]

do {
let request = try comm.send(data, to: 1,

while true {
let (completed, status) = try request
if completed {
print ("Request completed")

break
}
usleep (1000)
}
} catch {

print ("Testy,failed: \(error)")
}

tag: 0)

.test ()

4.5 waitAll(_:)

Wait for multiple requests to complete.
Usage:

import SwiftMPI

SwiftMPI.world
comm.rank ()

let comm
let rank

do {
var requests: [Request] = []

for dest in 0..<comm.size() {

if dest != rank {
let data: [Int32] = [Int32(rank),
let req = try comm.send(data, to:

requests.append(req)

let statuses = try waitAll(requests)
print ("All sends completed")

} catch {
print ("WaitAll, failed:,\(error)")

}

Int32(dest)]

dest,

tag:

0)

4.6 testAll(:)

Test if all requests in array have completed without blocking.

N =

N

Usage:

import SwiftMPI
let comm = SwiftMPI.world

do {
var requests: [Request]

(]

while true {
let (allCompleted, statuses) = try testAll (requests)
if allCompleted {
print ("All requests completed")

break
+
usleep (1000)
}
} catch {

print ("TestAll ,failed: \(error)")
}

4.7 waitAny(_ :)

Wait for any one request in array to complete.
Usage:

import SwiftMPI
let comm = SwiftMPI.world

do {
var requests: [Request] = []

let (index, status) = try waitAny(requests)
print ("Request,\(index) completed, first")

} catch {
print ("WaitAny,failed:,\(error)")

5 Collective Operations

5.1 Communicator.barrier()

Barrier synchronization - all processes wait until all arrive.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
let rank comm.rank ()

print ("Process\(rank) before barrier")
do {
try comm.barrier ()

print ("Process \(rank) after barrier")
} catch {
print ("Barrier,failed:,\(error)")

3

5.2 Communicator.broadcast(:count:datatype:root:)

Broadcast operation - root sends data to all processes.
Usage:

import SwiftMPI

] let comm = SwiftMPI.world

let rank comm.rank ()
5| var data: [Int32] = [0, O, O]

if rank == 0 {

data = [10, 20, 30]
}
do {

try data.withUnsafeMutableBufferPointer { buffer in
try comm.broadcast (buffer, count: 3,
datatype: .int, root: 0)
}
print ("Process \(rank) received: \(data)")
71} catch {
print ("Broadcast failed: ,\(error)")

}

5.3 Communicator.reduce(sendBuffer:recvBuffer:count:datatype:op:root:)

Reduce operation - combine values from all processes to root.
Usage:

N

5/ let sendValue: [Int32]

import SwiftMPI

let comm = SwiftMPI.world
let rank = comm.rank ()

[Int32(rank + 1)]
[0]

s| var recvValue: [Int32]

do {
try sendValue.withUnsafeBufferPointer { sendBuf in
try recvValue.withUnsafeMutableBufferPointer { recvBuf in
try comm.reduce(sendBuffer: sendBuf,
recvBuffer: recvBuf,
count: 1,
datatype: .int,

op: .sum,
root: 0)
}
}
if rank == 0 {
print ("Sum_,o0fall ranks: ;\(recvValue [0])")
+

10

23|} catch {
24 print ("Reduce failed: \(error)")

25(}

5.4 Communicator.allReduce(sendBuffer:recvBuffer:count:datatype:op:)

Allreduce operation - reduce and broadcast result to all processes.
Usage:

1| import SwiftMPI

3/ let comm = SwiftMPI.world

|let rank = comm.rank ()

5 let sendValue: [Double] = [Double(rank) * 1.5]
6| var recvValue: [Doublel [0.0]

s|do {

9 try sendValue.withUnsafeBufferPointer { sendBuf in

10 try recvValue.withUnsafeMutableBufferPointer { recvBuf in
11 try comm.allReduce (sendBuffer: sendBuf,

12 recvBuffer: recvBuf,

13 count: 1,

14 datatype: .double,

15 op: .sum)

16 }

17 }

8 print ("Process,\(rank) : sum =, \(recvValue [0])")
19} catch {

20 print ("AllReduce failed: ,\(error)")
21 }

5.5 Communicator.gather(sendBuffer:sendCount:sendType:recvBuffer:recvCount:recvT;

Gather operation - collect data from all processes to root.
Usage:

1| import SwiftMPI

3/ let comm = SwiftMPI.world

| let rank comm. rank ()

5/ let sendData: [Int32] = [Int32(rank), Int32(rank * 2)]

¢|var recvData = [Int32](repeating: O, count: comm.size() * 2)

s|do {

9 try sendData.withUnsafeBufferPointer { sendBuf in

10 try recvData.withUnsafeMutableBufferPointer { recvBuf in
11 try comm.gather (sendBuffer: sendBuf,

12 sendCount: 2,

13 sendType: .int,

14 recvBuffer: recvBuf,

15 recvCount: 2,

16 recvlype: .int,

17 root: 0)

21 if rank == 0 {

11

print ("Gathered, data:,\(recvData)")

}
} catch {

print ("Gather failed: \(error)")
}

5.6 Communicator.scatter(sendBuffer:sendCount:sendType:recvBuffer:recvCount:recvT

Scatter operation - distribute data from root to all processes.
Usage:

import SwiftMPI

let comm SwiftMPI.world
let rank = comm.rank ()
var sendData: [Int32] = []
var recvData = [Int32](repeating: O, count: 2)
if rank == 0 {
sendData = [0, O, 1, 2, 2, 4, 3, 6]
}
do {

try sendData.withUnsafeBufferPointer { sendBuf in

try recvData.withUnsafeMutableBufferPointer { recvBuf in
try comm.scatter (sendBuffer: sendBuf,
sendCount: 2,
sendType: .int,
recvBuffer: recvBuf,
recvCount: 2,
recvlype: .int,
root: 0)

}
}
print ("Process, \(rank) received: \(recvData)")
} catch {
print ("Scatter,failed:,\(error)")

}

5.7 Communicator.allGather(sendBuffer:sendCount:sendType:recvBuffer:recvCount:rec

Allgather operation - gather data from all processes to all processes.
Usage:

import SwiftMPI

let comm SwiftMPI .world

let rank = comm.rank ()

let sendData: [Int32] = [Int32(rank)]

var recvData = [Int32](repeating: O, count: comm.size())

do {
try sendData.withUnsafeBufferPointer { sendBuf in
try recvData.withUnsafeMutableBufferPointer { recvBuf in

try comm.allGather (sendBuffer: sendBuf,
sendCount: 1,
sendType: .int,

12

recvBuffer: recvBuf,
recvCount: 1,
recvType: .int)
}
}
print ("Process,\(rank) has,;all data: \(recvData)")
} catch {
print ("AllGather failed: \(error)")
}

5.8 Communicator.allToAll(sendBuffer:sendCount:sendType:recvBuffer:recvCount:recv’

Alltoall operation - each process sends distinct data to each process.
Usage:

import SwiftMPI

let comm = SwiftMPI.world

let rank = comm.rank ()

let size = comm.size ()

let sendData = (0..<size).map { Int32(rank * size + $0) }
var recvData = [Int32](repeating: O, count: size)

do {

try sendData.withUnsafeBufferPointer { sendBuf in
try recvData.withUnsafeMutableBufferPointer { recvBuf in
try comm.allToAll (sendBuffer: sendBuf,
sendCount: 1,
sendType: .int,
recvBuffer: recvBuf,
recvCount: 1,
recvlype: .int)
X
X
print ("Process, \(rank) received: \(recvData)")
} catch {
print ("A11ToAll_ failed: \(error)")

)| 3

5.9 Communicator.scan(sendBuffer:recvBuffer:count:datatype:op:)

Scan operation - inclusive prefix reduction across all processes.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
let rank = comm.rank ()
let sendValue: [Int32]
var recvValue: [Int32]

[Int32(rank + 1)]
[0]

do {
try sendValue.withUnsafeBufferPointer { sendBuf in
try recvValue.withUnsafeMutableBufferPointer { recvBuf in
try comm.scan(sendBuffer: sendBuf,
recvBuffer: recvBuf,
count: 1,

13

datatype: .int,
op: .sum)
+
}
print ("Process \(rank) : prefix sum,=,\(recvValue [0])")
} catch {
print ("Scan failed: \(error)")

}

5.10 Communicator.exScan(sendBuffer:recvBuffer:count:datatype:op:)

Exscan operation - exclusive prefix reduction across all processes.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
let rank = comm.rank ()
let sendValue: [Int32]
var recvValue: [Int32]

[Int32(rank + 1)]
[0]

do {
try sendValue.withUnsafeBufferPointer { sendBuf in
try recvValue.withUnsafeMutableBufferPointer { recvBuf in
try comm.exScan(sendBuffer: sendBuf,
recvBuffer: recvBuf,
count: 1,
datatype: .int,
op: .sum)
}
}
print ("Process \(rank) : exclusive_ prefix_ sum,=,\(recvValue [0])")
} catch {
print ("ExScan,failed: \(error)")

}

5.11 Communicator.gatherV (sendBuffer:sendCount:sendType:recvBuffer:recvCounts:dis

Gatherv operation - gather variable amounts of data to root process.
Usage:

import SwiftMPI

let comm = SwiftMPI.world

let rank = comm.rank ()

let sendCount = Int32(rank + 1)

let sendData = (0..<Int(sendCount)).map { Int32($0) }
var recvData [Int32] (repeating: 0, count: 10)

let recvCounts: [Int32] = [1, 2, 3, 4]

let displacements: [Int32] = [0, 1, 3, 6]

do {
try sendData.withUnsafeBufferPointer { sendBuf in
try recvData.withUnsafeMutableBufferPointer { recvBuf in
try comm.gatherV(sendBuffer: sendBuf,
sendCount: sendCount,
sendType: .int,

14

17 recvBuffer: recvBuf,

18 recvCounts: recvCounts,

19 displacements: displacements,
20 recvlype: .int,

21 root: 0)

22 }

23 }

24

25 if rank = {

=0
26 print ("Gathered variable data: \(recvData)")
27 }
25|} catch {
29 print ("GatherV, failed:,\(error)")
30| }

5.12 Communicator.scatterV (sendBuffer:sendCounts:displacements:send Type:recvBuffe

Scatterv operation - scatter variable amounts of data from root process.
Usage:

1| import SwiftMPI

SwiftMPI.world

Il

3/ let comm

i|let rank = comm.rank ()
s|var sendData: [Int32] = []
¢|var recvData = [Int32](repeating: O, count: rank + 1)

71 let sendCounts: [Int32] = [1, 2, 3, 4]
s|let displacements: [Int32] = [0, 1, 3, 6]

0|if rank == 0
11 sendData

J'.l}

A

[O’ 1’ 2, 3’ 4, 5’ 6’ 7’ 8’ 9]

14 do {

15 try sendData.withUnsafeBufferPointer { sendBuf in

16 try recvData.withUnsafeMutableBufferPointer { recvBuf in
17 try comm.scatterV(sendBuffer: sendBuf,

18 sendCounts: sendCounts,

19 displacements: displacements,
20 sendType: .int,

21 recvBuffer: recvBuf,

22 recvCount: Int32(rank + 1),
23 recvlype: .int,

24 root: 0)

25 }

26 }

27 print ("Process \(rank) _ received: \(recvData)")

25|} catch {

29 print ("ScatterV failed: \(error)")

5.13 Communicator.allGatherV (sendBuffer:sendCount:sendType:recvBuffer:recvCounts

Allgatherv operation - gather variable amounts of data to all processes.
Usage:

Ilimport SwiftMPI

15

N

sl let comm = SwiftMPI.world

let rank = comm.rank ()

let sendCount = Int32(rank + 1)

let sendData = (0..<Int(sendCount)).map { Int32($0) }
var recvData [Int32] (repeating: O, count: 10)

let recvCounts: [Int32] = [1, 2, 3, 4]

let displacements: [Int32] = [0, 1, 3, 6]

Il

do {
try sendData.withUnsafeBufferPointer { sendBuf in
try recvData.withUnsafeMutableBufferPointer { recvBuf in
try comm.allGatherV(sendBuffer: sendBuf,
sendCount: sendCount,
sendType: .int,
recvBuffer: recvBuf,
recvCounts: recvCounts,
displacements: displacements,
recvType: .int)
by
}
print ("Process \(rank) has,all variable data: \(recvData)")
} catch {
print ("AllGatherV failed: \(error)")
by

5.14 Communicator.allToAllV (sendBuffer:sendCounts:sendDisplacements:send Type:rec

Alltoallv operation - all-to-all with variable amounts of data.
Usage:

import SwiftMPI

let comm SwiftMPI.world

let rank = comm.rank ()

let size = comm.size ()

let sendCounts: [Int32] = [1, 2, 1, 2]

let sendDisplacements: [Int32] = [0, 1, 3, 4]

var sendData: [Int32] = [Int32(rank), Int32(rank), Int32(rank),

Int32(rank), Int32(rank), Int32(rank)]

, 2]

0, 1, 3, 4]
0, count: 6)

let recvCounts: [Int32] = [1, 2, 1
let recvDisplacements: [Int32] = [
var recvData = [Int32](repeating:

do {
try sendData.withUnsafeBufferPointer { sendBuf in
try recvData.withUnsafeMutableBufferPointer { recvBuf in

try comm.allToAllV(sendBuffer: sendBuf,
sendCounts: sendCounts,
sendDisplacements: sendDisplacements,
sendType: .int,
recvBuffer: recvBuf,
recvCounts: recvCounts,
recvDisplacements: recvDisplacements,
recvlype: .int)

16

}
}
print ("Process, \(rank) received: ,\(recvData)")
} catch {
print ("A11ToAl11V failed:,\(error)")

5.15 Communicator.probe(source:tag:)

Probe operation - check for incoming message without receiving it.
Usage:

import SwiftMPI
let comm = SwiftMPI.world

do {
let status = try comm.probe(source: 0, tag: 0)
print ("Message available from process \(status.source) with tagy
\(status.tag)")
} catch {
print ("Probe failed: \(error)")

}

5.16 Communicator.iprobe(source:tag:)

Iprobe operation - non-blocking probe for incoming message.
Usage:

import SwiftMPI
let comm = SwiftMPI.world

do {
let (found, status) = try comm.iprobe(source: 0, tag: 0)
if found, let stat = status {
print("Messageuavailableufromuprocessu\(stat.source)")
} else {
print ("No message available yet")
}
} catch {
print ("Iprobe failed:\(error)")
}

6 Datatypes
SwiftMPI provides predefined datatypes for common data types:

e Datatype.char - 8-bit signed character
e Datatype.short - 16-bit signed integer
e Datatype.int - 32-bit signed integer

e Datatype.long - 64-bit signed integer

17

N

e Datatype.longLong - 64-bit signed integer

e Datatype.unsignedChar - 8-bit unsigned character
e Datatype.unsignedShort - 16-bit unsigned integer
e Datatype.unsigned - 32-bit unsigned integer

e Datatype.unsignedLong - 64-bit unsigned integer
e Datatype.unsignedLonglong - 64-bit unsigned integer
e Datatype.float - 32-bit floating point

e Datatype.double - 64-bit floating point

e Datatype.longDouble - Extended precision float

e Datatype.byte - Raw byte data

e Datatype.packed - Packed data type

e Datatype.cBool - C boolean type

e Datatype.cFloatComplex - Complex float

e Datatype.cDoubleComplex - Complex double

e Datatype.cLongDoubleComplex - Complex long double

Usage:

import SwiftMPI

let comm = SwiftMPI.world
let data: [Double] = [3.14, 2.71]

do {
try data.withUnsafeBufferPointer { buffer in
try comm.send(buffer, count: data.count,

datatype: .double, dest: 1, tag:

}
} catch {
print ("Send failed: \(error)")

3| +

0)

7 Reduction Operations
SwiftMPI provides predefined reduction operations:

e Operation.max - Maximum value operation
e Operation.min - Minimum value operation

e Operation.sum - Sum operation

Operation.product - Product operation

Operation.logicalAnd - Logical AND operation

18

e Operation.bitwiseAnd - Bitwise AND operation
e Operation.logicalOr - Logical OR operation
e Operation.bitwiseOr - Bitwise OR operation
e Operation.logicalXor - Logical XOR operation
e Operation.bitwiseXor - Bitwise XOR operation

e Operation.minLoc - Minimum with location

Operation.maxLoc - Maximum with location

Usage:

import SwiftMPI

let comm = SwiftMPI.world

let rank = comm.rank ()

let values: [Int32] = [Int32(rank * 10)]
var result: [Int32] = [0]

do {
try values.withUnsafeBufferPointer { sendBuf in
try result.withUnsafeMutableBufferPointer { recvBuf in

try comm.reduce (sendBuffer: sendBuf,
recvBuffer: recvBuf,

count: 1,
datatype: .int,
op: .max,
root: 0)
}
}
if rank == 0 {
print ("Maximum ,value: \(result [0])")
}
} catch {
print ("Reduce failed: \(error)")
}
8 Status

8.1 Status.source

Get source rank of received message.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
var buffer = [Int32](repeating: 0, count: 5)

do {

let status = try buffer.withUnsafeMutableBufferPointer { buf
try comm.receive (buf, count: 5, datatype: .int,

19

in

N

source: -1, tag: -1)
}
print ("Received message from,process \(status.source)")
print ("Messagetag:,\(status.tag)")
print ("Element count: \(status.elementCount)")
} catch {
print ("Receive,failed:,\(error)")

}

8.2 Status.tag

Get tag of received message.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
var buffer = [Int32](repeating: 0, count: 10)

do {
let status = try buffer.withUnsafeMutableBufferPointer { buf in
try comm.receive (buf, count: 10, datatype: .int,
source: -1, tag: -1)
}

print ("Received message_ with_ tag, \(status.tag)")
} catch {
print ("Receive,failed: \(error)")

3

8.3 Status.count(datatype:)

Get count of received elements for given datatype.
Usage:

import SwiftMPI

let comm = SwiftMPI.world
var buffer = [Int32](repeating: 0, count: 10)

do {
let status = try buffer.withUnsafeMutableBufferPointer { buf in
try comm.receive (buf, count: 10, datatype: .int,
source: 0, tag: 0)
}
let elementCount = status.count(datatype: .int)
print ("Received \(elementCount) elements")
} catch {

print ("Receive failed: \(error)")

50 3

9 Complete Example

Here is a complete example demonstrating multiple SwiftMPI functions:

import SwiftMPI

20

do {
try SwiftMPI.initialize ()
let comm = SwiftMPI.world

let rank = comm.rank ()
let size comm.size ()

|

print ("Process, \(rank) of_ \(size)_ started")

try comm.barrier ()

if rank == 0 {
let data: [Int32] = [1, 2, 3, 4, 5]
try comm.send(data, to: 1, tag: 0)
print ("Process_,0,sent data to,process 1")

} else if rank == 1 {
let received = try comm.receive(count: 5, from: 0, tag: 0)
print ("Processl,received: \(received)")

}

var broadcastData: [Int32] = [0, O, O]

if rank == 0 {
broadcastData = [10, 20, 30]

+

try broadcastData.withUnsafeMutableBufferPointer { buffer in
try comm.broadcast (buffer, count: 3, datatype: .int, root: 0)

}

print ("Process \(rank) received broadcast: \(broadcastData)")

let sendValue: [Int32] [Int32(rank + 1)]

var recvValue: [Int32] (0]

try sendValue.withUnsafeBufferPointer { sendBuf in

try recvValue.withUnsafeMutableBufferPointer { recvBuf in
try comm.reduce(sendBuffer: sendBuf,

recvBuffer: recvBuf,
count: 1,
datatype: .int,

op: .sum,
root: 0)
}
+
if rank == 0 {
print ("Sumof_ all ranks: \(recvValue [0])")
}

let allSendValue: [Double] [Double (rank) * 1.5]
var allRecvValue: [Double] = [0.0]
try allSendValue.withUnsafeBufferPointer { sendBuf in
try allRecvValue.withUnsafeMutableBufferPointer { recvBuf in
try comm.allReduce (sendBuffer: sendBuf,
recvBuffer: recvBuf,
count: 1,

21

61

datatype: .double,
op: .sum)
3
X

print ("Process\(rank) :,all-reducesum,=,\(allRecvValue [0])")

try SwiftMPI.finalize ()

} catch {
print ("MPI error:, \(error)")
exit (1)

}

10 Error Handling

All SwiftMPI functions that can fail throw MPIError exceptions. Always wrap MPI calls in
do-catch blocks:

import SwiftMPI

do {
try SwiftMPI.initialize ()

try SwiftMPI.finalize ()

} catch MPIError.alreadylInitialized {
print ("MPI jalready,initialized")

} catch MPIError.notInitialized {
print ("MPI_ not,initialized")

} catch MPIError.communicationFailed {
print ("Communication; failed")

31} catch {

print ("Other MPI error: \(error)")

11 MPIError Types

The following error types are defined:

e MPIError.alreadyInitialized - MPI already initialized

e MPIError.notInitialized - MPI not initialized

e MPIError.initializationFailed - MPI initialization failed

e MPIError.finalizationFailed - MPI finalization failed

e MPIError.invalidCommunicator - Invalid communicator provided
e MPIError.invalidRank - Invalid rank specified

e MPIError.invalidTag - Invalid message tag

e MPIError.invalidDatatype - Invalid datatype specified

e MPIError.communicationFailed - Communication operation failed

22

e MPIError.operationFailed(operation: String) - Generic operation failure
e MPIError.processSpawnFailed - Failed to spawn processes

e MPIError.connectionFailed - Failed to establish connection

23

