
SwiftMPI API Reference
Function Reference with Usage Examples

SwiftMPI Documentation

2025

Contents

1

1 Initialization and Finalization

1.1 SwiftMPI.initialize()

Initialize MPI environment without command line arguments.
Usage:

1 import SwiftMPI
2

3 do {
4 try SwiftMPI.initialize ()
5 // MPI is now initialized
6 } catch {
7 print("MPI␣initialization␣failed:␣\(error)")
8 }

1.2 SwiftMPI.initialize(argc:argv:)

Initialize MPI environment with command line arguments.
Usage:

1 import SwiftMPI
2

3 let argc = CommandLine.argc
4 let argv = CommandLine.unsafeArgv
5

6 do {
7 try SwiftMPI.initialize(argc: argc , argv: argv)
8 // MPI is now initialized
9 } catch {

10 print("MPI␣initialization␣failed:␣\(error)")
11 }

1.3 SwiftMPI.finalize()

Finalize MPI environment and clean up resources.
Usage:

1 import SwiftMPI
2

3 do {
4 try SwiftMPI.finalize ()
5 // MPI resources cleaned up
6 } catch {
7 print("MPI␣finalization␣failed:␣\(error)")
8 }

1.4 SwiftMPI.wtime()

Get wall clock time in seconds since arbitrary time.
Usage:

1 import SwiftMPI
2

3 let startTime = SwiftMPI.wtime()
4 // ... perform computation ...
5 let endTime = SwiftMPI.wtime()

2

6 let elapsed = endTime - startTime
7 print("Computation␣took␣\(elapsed)␣seconds")

1.5 SwiftMPI.wtick()

Get resolution of MPI_Wtime in seconds.
Usage:

1 import SwiftMPI
2

3 let resolution = SwiftMPI.wtick()
4 print("Time␣resolution:␣\(resolution)␣seconds")

1.6 SwiftMPI.world

Get world communicator containing all processes.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let size = comm.size()
6 print("Process␣\(rank)␣of␣\(size)")

1.7 SwiftMPI.abort(comm:errorCode:)

Abort all MPI processes with specified error code.
Usage:

1 import SwiftMPI
2

3 if someErrorCondition {
4 SwiftMPI.abort(comm: SwiftMPI.world , errorCode: 1)
5 // Process exits with error code 1
6 }

2 Communicator Operations

2.1 Communicator.rank()

Get rank of current process in this communicator.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let myRank = comm.rank()
5 print("My␣rank␣is␣\(myRank)")

3

2.2 Communicator.size()

Get number of processes in this communicator.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let totalProcesses = comm.size()
5 print("Total␣processes:␣\(totalProcesses)")

2.3 Communicator.duplicate()

Duplicate this communicator creating new independent communicator.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 do {
5 let newComm = try comm.duplicate ()
6 // Use newComm independently
7 } catch {
8 print("Failed␣to␣duplicate␣communicator:␣\(error)")
9 }

2.4 Communicator.free()

Free this communicator and release associated resources.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 do {
5 try comm.free()
6 // Communicator resources released
7 } catch {
8 print("Failed␣to␣free␣communicator:␣\(error)")
9 }

3 Point-to-Point Communication

3.1 Communicator.send(_:count:datatype:dest:tag:)

Blocking send operation sending data to destination process.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let data: [Int32] = [1, 2, 3, 4, 5]
6

7 if rank == 0 {
8 do {

4

9 try data.withUnsafeBufferPointer { buffer in
10 try comm.send(buffer , count: data.count ,
11 datatype: .int , dest: 1, tag: 0)
12 }
13 print("Sent␣data␣to␣process␣1")
14 } catch {
15 print("Send␣failed:␣\(error)")
16 }
17 }

3.2 Communicator.receive(_:count:datatype:source:tag:)

Blocking receive operation receiving data from source process.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5

6 if rank == 1 {
7 var buffer = [Int32](repeating: 0, count: 5)
8 do {
9 let status = try buffer.withUnsafeMutableBufferPointer { buf in

10 try comm.receive(buf , count: 5, datatype: .int ,
11 source: 0, tag: 0)
12 }
13 print("Received␣\(status.elementCount)␣elements␣from␣process␣

\(status.source)")
14 print("Data:␣\(buffer)")
15 } catch {
16 print("Receive␣failed:␣\(error)")
17 }
18 }

3.3 Communicator.send(_:to:tag:) - Convenience for Int32

Send array of integers to destination process.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let data: [Int32] = [10, 20, 30]
5

6 do {
7 try comm.send(data , to: 1, tag: 0)
8 print("Sent␣integer␣array")
9 } catch {

10 print("Send␣failed:␣\(error)")
11 }

3.4 Communicator.receive(count:from:tag:) - Convenience for Int32

Receive array of integers from source process.
Usage:

5

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4

5 do {
6 let received = try comm.receive(count: 3, from: 0, tag: 0)
7 print("Received:␣\(received)")
8 } catch {
9 print("Receive␣failed:␣\(error)")

10 }

3.5 Communicator.send(_:to:tag:) - Convenience for Double

Send array of doubles to destination process.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let data: [Double] = [3.14 , 2.71, 1.41]
5

6 do {
7 try comm.send(data , to: 1, tag: 1)
8 print("Sent␣double␣array")
9 } catch {

10 print("Send␣failed:␣\(error)")
11 }

3.6 Communicator.receiveDoubles(count:from:tag:)

Receive array of doubles from source process.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4

5 do {
6 let received = try comm.receiveDoubles(count: 3, from: 0, tag: 1)
7 print("Received␣doubles:␣\(received)")
8 } catch {
9 print("Receive␣failed:␣\(error)")

10 }

4 Non-blocking Communication

4.1 Communicator.isend(_:count:datatype:dest:tag:)

Non-blocking send operation initiating asynchronous send.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let data: [Int32] = [1, 2, 3, 4, 5]

6

5

6 do {
7 let request = try data.withUnsafeBufferPointer { buffer in
8 try comm.isend(buffer , count: data.count ,
9 datatype: .int , dest: 1, tag: 0)

10 }
11 // Continue with other work ...
12 let status = try request.wait()
13 print("Send␣completed")
14 } catch {
15 print("Isend␣failed:␣\(error)")
16 }

4.2 Communicator.ireceive(_:count:datatype:source:tag:)

Non-blocking receive operation initiating asynchronous receive.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 var buffer = [Int32](repeating: 0, count: 5)
5

6 do {
7 let request = try buffer.withUnsafeMutableBufferPointer { buf in
8 try comm.ireceive(buf , count: 5, datatype: .int ,
9 source: 0, tag: 0)

10 }
11 // Continue with other work ...
12 let status = try request.wait()
13 print("Receive␣completed:␣\(buffer)")
14 } catch {
15 print("Ireceive␣failed:␣\(error)")
16 }

4.3 Request.wait()

Wait for this request to complete and return status.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let data: [Int32] = [1, 2, 3]
5

6 do {
7 let request = try comm.send(data , to: 1, tag: 0)
8 // Do other work ...
9 let status = try request.wait()

10 print("Request␣completed")
11 } catch {
12 print("Wait␣failed:␣\(error)")
13 }

7

4.4 Request.test()

Test if this request has completed without blocking.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let data: [Int32] = [1, 2, 3]
5

6 do {
7 let request = try comm.send(data , to: 1, tag: 0)
8

9 while true {
10 let (completed , status) = try request.test()
11 if completed {
12 print("Request␣completed")
13 break
14 }
15 // Do other work while waiting ...
16 usleep (1000)
17 }
18 } catch {
19 print("Test␣failed:␣\(error)")
20 }

4.5 waitAll(_:)

Wait for multiple requests to complete.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5

6 do {
7 var requests: [Request] = []
8

9 // Initiate multiple sends
10 for dest in 0..<comm.size() {
11 if dest != rank {
12 let data: [Int32] = [Int32(rank), Int32(dest)]
13 let req = try comm.send(data , to: dest , tag: 0)
14 requests.append(req)
15 }
16 }
17

18 // Wait for all to complete
19 let statuses = try waitAll(requests)
20 print("All␣sends␣completed")
21 } catch {
22 print("WaitAll␣failed:␣\(error)")
23 }

4.6 testAll(_:)

Test if all requests in array have completed without blocking.

8

Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4

5 do {
6 var requests: [Request] = []
7 // ... create requests ...
8

9 while true {
10 let (allCompleted , statuses) = try testAll(requests)
11 if allCompleted {
12 print("All␣requests␣completed")
13 break
14 }
15 // Continue working ...
16 usleep (1000)
17 }
18 } catch {
19 print("TestAll␣failed:␣\(error)")
20 }

4.7 waitAny(_:)

Wait for any one request in array to complete.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4

5 do {
6 var requests: [Request] = []
7 // ... create multiple requests ...
8

9 let (index , status) = try waitAny(requests)
10 print("Request␣\(index)␣completed␣first")
11 } catch {
12 print("WaitAny␣failed:␣\(error)")
13 }

5 Collective Operations

5.1 Communicator.barrier()

Barrier synchronization - all processes wait until all arrive.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5

6 print("Process␣\(rank)␣before␣barrier")
7 do {
8 try comm.barrier ()

9

9 print("Process␣\(rank)␣after␣barrier")
10 } catch {
11 print("Barrier␣failed:␣\(error)")
12 }

5.2 Communicator.broadcast(_:count:datatype:root:)

Broadcast operation - root sends data to all processes.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 var data: [Int32] = [0, 0, 0]
6

7 if rank == 0 {
8 data = [10, 20, 30]
9 }

10

11 do {
12 try data.withUnsafeMutableBufferPointer { buffer in
13 try comm.broadcast(buffer , count: 3,
14 datatype: .int , root: 0)
15 }
16 print("Process␣\(rank)␣received:␣\(data)")
17 } catch {
18 print("Broadcast␣failed:␣\(error)")
19 }

5.3 Communicator.reduce(sendBuffer:recvBuffer:count:datatype:op:root:)

Reduce operation - combine values from all processes to root.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let sendValue: [Int32] = [Int32(rank + 1)]
6 var recvValue: [Int32] = [0]
7

8 do {
9 try sendValue.withUnsafeBufferPointer { sendBuf in

10 try recvValue.withUnsafeMutableBufferPointer { recvBuf in
11 try comm.reduce(sendBuffer: sendBuf ,
12 recvBuffer: recvBuf ,
13 count: 1,
14 datatype: .int ,
15 op: .sum ,
16 root: 0)
17 }
18 }
19

20 if rank == 0 {
21 print("Sum␣of␣all␣ranks:␣\(recvValue [0])")
22 }

10

23 } catch {
24 print("Reduce␣failed:␣\(error)")
25 }

5.4 Communicator.allReduce(sendBuffer:recvBuffer:count:datatype:op:)

Allreduce operation - reduce and broadcast result to all processes.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let sendValue: [Double] = [Double(rank) * 1.5]
6 var recvValue: [Double] = [0.0]
7

8 do {
9 try sendValue.withUnsafeBufferPointer { sendBuf in

10 try recvValue.withUnsafeMutableBufferPointer { recvBuf in
11 try comm.allReduce(sendBuffer: sendBuf ,
12 recvBuffer: recvBuf ,
13 count: 1,
14 datatype: .double ,
15 op: .sum)
16 }
17 }
18 print("Process␣\(rank):␣sum␣=␣\(recvValue [0])")
19 } catch {
20 print("AllReduce␣failed:␣\(error)")
21 }

5.5 Communicator.gather(sendBuffer:sendCount:sendType:recvBuffer:recvCount:recvType:root:)

Gather operation - collect data from all processes to root.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let sendData: [Int32] = [Int32(rank), Int32(rank * 2)]
6 var recvData = [Int32](repeating: 0, count: comm.size() * 2)
7

8 do {
9 try sendData.withUnsafeBufferPointer { sendBuf in

10 try recvData.withUnsafeMutableBufferPointer { recvBuf in
11 try comm.gather(sendBuffer: sendBuf ,
12 sendCount: 2,
13 sendType: .int ,
14 recvBuffer: recvBuf ,
15 recvCount: 2,
16 recvType: .int ,
17 root: 0)
18 }
19 }
20

21 if rank == 0 {

11

22 print("Gathered␣data:␣\(recvData)")
23 }
24 } catch {
25 print("Gather␣failed:␣\(error)")
26 }

5.6 Communicator.scatter(sendBuffer:sendCount:sendType:recvBuffer:recvCount:recvType:root:)

Scatter operation - distribute data from root to all processes.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 var sendData: [Int32] = []
6 var recvData = [Int32](repeating: 0, count: 2)
7

8 if rank == 0 {
9 sendData = [0, 0, 1, 2, 2, 4, 3, 6] // Data for 4 processes

10 }
11

12 do {
13 try sendData.withUnsafeBufferPointer { sendBuf in
14 try recvData.withUnsafeMutableBufferPointer { recvBuf in
15 try comm.scatter(sendBuffer: sendBuf ,
16 sendCount: 2,
17 sendType: .int ,
18 recvBuffer: recvBuf ,
19 recvCount: 2,
20 recvType: .int ,
21 root: 0)
22 }
23 }
24 print("Process␣\(rank)␣received:␣\(recvData)")
25 } catch {
26 print("Scatter␣failed:␣\(error)")
27 }

5.7 Communicator.allGather(sendBuffer:sendCount:sendType:recvBuffer:recvCount:recvType:)

Allgather operation - gather data from all processes to all processes.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let sendData: [Int32] = [Int32(rank)]
6 var recvData = [Int32](repeating: 0, count: comm.size())
7

8 do {
9 try sendData.withUnsafeBufferPointer { sendBuf in

10 try recvData.withUnsafeMutableBufferPointer { recvBuf in
11 try comm.allGather(sendBuffer: sendBuf ,
12 sendCount: 1,
13 sendType: .int ,

12

14 recvBuffer: recvBuf ,
15 recvCount: 1,
16 recvType: .int)
17 }
18 }
19 print("Process␣\(rank)␣has␣all␣data:␣\(recvData)")
20 } catch {
21 print("AllGather␣failed:␣\(error)")
22 }

5.8 Communicator.allToAll(sendBuffer:sendCount:sendType:recvBuffer:recvCount:recvType:)

Alltoall operation - each process sends distinct data to each process.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let size = comm.size()
6 let sendData = (0..< size).map { Int32(rank * size + $0) }
7 var recvData = [Int32](repeating: 0, count: size)
8

9 do {
10 try sendData.withUnsafeBufferPointer { sendBuf in
11 try recvData.withUnsafeMutableBufferPointer { recvBuf in
12 try comm.allToAll(sendBuffer: sendBuf ,
13 sendCount: 1,
14 sendType: .int ,
15 recvBuffer: recvBuf ,
16 recvCount: 1,
17 recvType: .int)
18 }
19 }
20 print("Process␣\(rank)␣received:␣\(recvData)")
21 } catch {
22 print("AllToAll␣failed:␣\(error)")
23 }

5.9 Communicator.scan(sendBuffer:recvBuffer:count:datatype:op:)

Scan operation - inclusive prefix reduction across all processes.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let sendValue: [Int32] = [Int32(rank + 1)]
6 var recvValue: [Int32] = [0]
7

8 do {
9 try sendValue.withUnsafeBufferPointer { sendBuf in

10 try recvValue.withUnsafeMutableBufferPointer { recvBuf in
11 try comm.scan(sendBuffer: sendBuf ,
12 recvBuffer: recvBuf ,
13 count: 1,

13

14 datatype: .int ,
15 op: .sum)
16 }
17 }
18 print("Process␣\(rank):␣prefix␣sum␣=␣\(recvValue [0])")
19 } catch {
20 print("Scan␣failed:␣\(error)")
21 }

5.10 Communicator.exScan(sendBuffer:recvBuffer:count:datatype:op:)

Exscan operation - exclusive prefix reduction across all processes.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let sendValue: [Int32] = [Int32(rank + 1)]
6 var recvValue: [Int32] = [0]
7

8 do {
9 try sendValue.withUnsafeBufferPointer { sendBuf in

10 try recvValue.withUnsafeMutableBufferPointer { recvBuf in
11 try comm.exScan(sendBuffer: sendBuf ,
12 recvBuffer: recvBuf ,
13 count: 1,
14 datatype: .int ,
15 op: .sum)
16 }
17 }
18 print("Process␣\(rank):␣exclusive␣prefix␣sum␣=␣\(recvValue [0])")
19 } catch {
20 print("ExScan␣failed:␣\(error)")
21 }

5.11 Communicator.gatherV(sendBuffer:sendCount:sendType:recvBuffer:recvCounts:displacements:recvType:root:)

Gatherv operation - gather variable amounts of data to root process.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let sendCount = Int32(rank + 1)
6 let sendData = (0..<Int(sendCount)).map { Int32($0) }
7 var recvData = [Int32](repeating: 0, count: 10)
8 let recvCounts: [Int32] = [1, 2, 3, 4] // For 4 processes
9 let displacements: [Int32] = [0, 1, 3, 6]

10

11 do {
12 try sendData.withUnsafeBufferPointer { sendBuf in
13 try recvData.withUnsafeMutableBufferPointer { recvBuf in
14 try comm.gatherV(sendBuffer: sendBuf ,
15 sendCount: sendCount ,
16 sendType: .int ,

14

17 recvBuffer: recvBuf ,
18 recvCounts: recvCounts ,
19 displacements: displacements ,
20 recvType: .int ,
21 root: 0)
22 }
23 }
24

25 if rank == 0 {
26 print("Gathered␣variable␣data:␣\(recvData)")
27 }
28 } catch {
29 print("GatherV␣failed:␣\(error)")
30 }

5.12 Communicator.scatterV(sendBuffer:sendCounts:displacements:sendType:recvBuffer:recvCount:recvType:root:)

Scatterv operation - scatter variable amounts of data from root process.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 var sendData: [Int32] = []
6 var recvData = [Int32](repeating: 0, count: rank + 1)
7 let sendCounts: [Int32] = [1, 2, 3, 4]
8 let displacements: [Int32] = [0, 1, 3, 6]
9

10 if rank == 0 {
11 sendData = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
12 }
13

14 do {
15 try sendData.withUnsafeBufferPointer { sendBuf in
16 try recvData.withUnsafeMutableBufferPointer { recvBuf in
17 try comm.scatterV(sendBuffer: sendBuf ,
18 sendCounts: sendCounts ,
19 displacements: displacements ,
20 sendType: .int ,
21 recvBuffer: recvBuf ,
22 recvCount: Int32(rank + 1),
23 recvType: .int ,
24 root: 0)
25 }
26 }
27 print("Process␣\(rank)␣received:␣\(recvData)")
28 } catch {
29 print("ScatterV␣failed:␣\(error)")
30 }

5.13 Communicator.allGatherV(sendBuffer:sendCount:sendType:recvBuffer:recvCounts:displacements:recvType:)

Allgatherv operation - gather variable amounts of data to all processes.
Usage:

1 import SwiftMPI

15

2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let sendCount = Int32(rank + 1)
6 let sendData = (0..<Int(sendCount)).map { Int32($0) }
7 var recvData = [Int32](repeating: 0, count: 10)
8 let recvCounts: [Int32] = [1, 2, 3, 4]
9 let displacements: [Int32] = [0, 1, 3, 6]

10

11 do {
12 try sendData.withUnsafeBufferPointer { sendBuf in
13 try recvData.withUnsafeMutableBufferPointer { recvBuf in
14 try comm.allGatherV(sendBuffer: sendBuf ,
15 sendCount: sendCount ,
16 sendType: .int ,
17 recvBuffer: recvBuf ,
18 recvCounts: recvCounts ,
19 displacements: displacements ,
20 recvType: .int)
21 }
22 }
23 print("Process␣\(rank)␣has␣all␣variable␣data:␣\(recvData)")
24 } catch {
25 print("AllGatherV␣failed:␣\(error)")
26 }

5.14 Communicator.allToAllV(sendBuffer:sendCounts:sendDisplacements:sendType:recvBuffer:recvCounts:recvDisplacements:recvType:)

Alltoallv operation - all-to-all with variable amounts of data.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let size = comm.size()
6

7 // Prepare variable send data
8 let sendCounts: [Int32] = [1, 2, 1, 2] // For 4 processes
9 let sendDisplacements: [Int32] = [0, 1, 3, 4]

10 var sendData: [Int32] = [Int32(rank), Int32(rank), Int32(rank),
Int32(rank), Int32(rank), Int32(rank)]

11

12 let recvCounts: [Int32] = [1, 2, 1, 2]
13 let recvDisplacements: [Int32] = [0, 1, 3, 4]
14 var recvData = [Int32](repeating: 0, count: 6)
15

16 do {
17 try sendData.withUnsafeBufferPointer { sendBuf in
18 try recvData.withUnsafeMutableBufferPointer { recvBuf in
19 try comm.allToAllV(sendBuffer: sendBuf ,
20 sendCounts: sendCounts ,
21 sendDisplacements: sendDisplacements ,
22 sendType: .int ,
23 recvBuffer: recvBuf ,
24 recvCounts: recvCounts ,
25 recvDisplacements: recvDisplacements ,
26 recvType: .int)

16

27 }
28 }
29 print("Process␣\(rank)␣received:␣\(recvData)")
30 } catch {
31 print("AllToAllV␣failed:␣\(error)")
32 }

5.15 Communicator.probe(source:tag:)

Probe operation - check for incoming message without receiving it.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4

5 do {
6 let status = try comm.probe(source: 0, tag: 0)
7 print("Message␣available␣from␣process␣\(status.source)␣with␣tag␣

\(status.tag)")
8 } catch {
9 print("Probe␣failed:␣\(error)")

10 }

5.16 Communicator.iprobe(source:tag:)

Iprobe operation - non-blocking probe for incoming message.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4

5 do {
6 let (found , status) = try comm.iprobe(source: 0, tag: 0)
7 if found , let stat = status {
8 print("Message␣available␣from␣process␣\(stat.source)")
9 } else {

10 print("No␣message␣available␣yet")
11 }
12 } catch {
13 print("Iprobe␣failed:␣\(error)")
14 }

6 Datatypes

SwiftMPI provides predefined datatypes for common data types:

• Datatype.char - 8-bit signed character

• Datatype.short - 16-bit signed integer

• Datatype.int - 32-bit signed integer

• Datatype.long - 64-bit signed integer

17

• Datatype.longLong - 64-bit signed integer

• Datatype.unsignedChar - 8-bit unsigned character

• Datatype.unsignedShort - 16-bit unsigned integer

• Datatype.unsigned - 32-bit unsigned integer

• Datatype.unsignedLong - 64-bit unsigned integer

• Datatype.unsignedLongLong - 64-bit unsigned integer

• Datatype.float - 32-bit floating point

• Datatype.double - 64-bit floating point

• Datatype.longDouble - Extended precision float

• Datatype.byte - Raw byte data

• Datatype.packed - Packed data type

• Datatype.cBool - C boolean type

• Datatype.cFloatComplex - Complex float

• Datatype.cDoubleComplex - Complex double

• Datatype.cLongDoubleComplex - Complex long double

Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let data: [Double] = [3.14 , 2.71]
5

6 do {
7 try data.withUnsafeBufferPointer { buffer in
8 try comm.send(buffer , count: data.count ,
9 datatype: .double , dest: 1, tag: 0)

10 }
11 } catch {
12 print("Send␣failed:␣\(error)")
13 }

7 Reduction Operations

SwiftMPI provides predefined reduction operations:

• Operation.max - Maximum value operation

• Operation.min - Minimum value operation

• Operation.sum - Sum operation

• Operation.product - Product operation

• Operation.logicalAnd - Logical AND operation

18

• Operation.bitwiseAnd - Bitwise AND operation

• Operation.logicalOr - Logical OR operation

• Operation.bitwiseOr - Bitwise OR operation

• Operation.logicalXor - Logical XOR operation

• Operation.bitwiseXor - Bitwise XOR operation

• Operation.minLoc - Minimum with location

• Operation.maxLoc - Maximum with location

Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 let rank = comm.rank()
5 let values: [Int32] = [Int32(rank * 10)]
6 var result: [Int32] = [0]
7

8 do {
9 try values.withUnsafeBufferPointer { sendBuf in

10 try result.withUnsafeMutableBufferPointer { recvBuf in
11 // Find maximum value across all processes
12 try comm.reduce(sendBuffer: sendBuf ,
13 recvBuffer: recvBuf ,
14 count: 1,
15 datatype: .int ,
16 op: .max ,
17 root: 0)
18 }
19 }
20

21 if rank == 0 {
22 print("Maximum␣value:␣\(result [0])")
23 }
24 } catch {
25 print("Reduce␣failed:␣\(error)")
26 }

8 Status

8.1 Status.source

Get source rank of received message.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 var buffer = [Int32](repeating: 0, count: 5)
5

6 do {
7 let status = try buffer.withUnsafeMutableBufferPointer { buf in
8 try comm.receive(buf , count: 5, datatype: .int ,

19

9 source: -1, tag: -1) // Receive from any source
10 }
11 print("Received␣message␣from␣process␣\(status.source)")
12 print("Message␣tag:␣\(status.tag)")
13 print("Element␣count:␣\(status.elementCount)")
14 } catch {
15 print("Receive␣failed:␣\(error)")
16 }

8.2 Status.tag

Get tag of received message.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 var buffer = [Int32](repeating: 0, count: 10)
5

6 do {
7 let status = try buffer.withUnsafeMutableBufferPointer { buf in
8 try comm.receive(buf , count: 10, datatype: .int ,
9 source: -1, tag: -1) // Receive with any tag

10 }
11 print("Received␣message␣with␣tag␣\(status.tag)")
12 } catch {
13 print("Receive␣failed:␣\(error)")
14 }

8.3 Status.count(datatype:)

Get count of received elements for given datatype.
Usage:

1 import SwiftMPI
2

3 let comm = SwiftMPI.world
4 var buffer = [Int32](repeating: 0, count: 10)
5

6 do {
7 let status = try buffer.withUnsafeMutableBufferPointer { buf in
8 try comm.receive(buf , count: 10, datatype: .int ,
9 source: 0, tag: 0)

10 }
11 let elementCount = status.count(datatype: .int)
12 print("Received␣\(elementCount)␣elements")
13 } catch {
14 print("Receive␣failed:␣\(error)")
15 }

9 Complete Example

Here is a complete example demonstrating multiple SwiftMPI functions:

1 import SwiftMPI
2

20

3 do {
4 // Initialize MPI
5 try SwiftMPI.initialize ()
6

7 let comm = SwiftMPI.world
8 let rank = comm.rank()
9 let size = comm.size()

10

11 print("Process␣\(rank)␣of␣\(size)␣started")
12

13 // Barrier synchronization
14 try comm.barrier ()
15

16 // Point -to-point communication
17 if rank == 0 {
18 let data: [Int32] = [1, 2, 3, 4, 5]
19 try comm.send(data , to: 1, tag: 0)
20 print("Process␣0␣sent␣data␣to␣process␣1")
21 } else if rank == 1 {
22 let received = try comm.receive(count: 5, from: 0, tag: 0)
23 print("Process␣1␣received:␣\(received)")
24 }
25

26 // Broadcast
27 var broadcastData: [Int32] = [0, 0, 0]
28 if rank == 0 {
29 broadcastData = [10, 20, 30]
30 }
31 try broadcastData.withUnsafeMutableBufferPointer { buffer in
32 try comm.broadcast(buffer , count: 3, datatype: .int , root: 0)
33 }
34 print("Process␣\(rank)␣received␣broadcast:␣\(broadcastData)")
35

36 // Reduce operation
37 let sendValue: [Int32] = [Int32(rank + 1)]
38 var recvValue: [Int32] = [0]
39 try sendValue.withUnsafeBufferPointer { sendBuf in
40 try recvValue.withUnsafeMutableBufferPointer { recvBuf in
41 try comm.reduce(sendBuffer: sendBuf ,
42 recvBuffer: recvBuf ,
43 count: 1,
44 datatype: .int ,
45 op: .sum ,
46 root: 0)
47 }
48 }
49 if rank == 0 {
50 print("Sum␣of␣all␣ranks:␣\(recvValue [0])")
51 }
52

53 // AllReduce
54 let allSendValue: [Double] = [Double(rank) * 1.5]
55 var allRecvValue: [Double] = [0.0]
56 try allSendValue.withUnsafeBufferPointer { sendBuf in
57 try allRecvValue.withUnsafeMutableBufferPointer { recvBuf in
58 try comm.allReduce(sendBuffer: sendBuf ,
59 recvBuffer: recvBuf ,
60 count: 1,

21

61 datatype: .double ,
62 op: .sum)
63 }
64 }
65 print("Process␣\(rank):␣all -reduce␣sum␣=␣\(allRecvValue [0])")
66

67 // Finalize MPI
68 try SwiftMPI.finalize ()
69

70 } catch {
71 print("MPI␣error:␣\(error)")
72 exit (1)
73 }

10 Error Handling

All SwiftMPI functions that can fail throw MPIError exceptions. Always wrap MPI calls in
do-catch blocks:

1 import SwiftMPI
2

3 do {
4 try SwiftMPI.initialize ()
5 // ... use MPI functions ...
6 try SwiftMPI.finalize ()
7 } catch MPIError.alreadyInitialized {
8 print("MPI␣already␣initialized")
9 } catch MPIError.notInitialized {

10 print("MPI␣not␣initialized")
11 } catch MPIError.communicationFailed {
12 print("Communication␣failed")
13 } catch {
14 print("Other␣MPI␣error:␣\(error)")
15 }

11 MPIError Types

The following error types are defined:

• MPIError.alreadyInitialized - MPI already initialized

• MPIError.notInitialized - MPI not initialized

• MPIError.initializationFailed - MPI initialization failed

• MPIError.finalizationFailed - MPI finalization failed

• MPIError.invalidCommunicator - Invalid communicator provided

• MPIError.invalidRank - Invalid rank specified

• MPIError.invalidTag - Invalid message tag

• MPIError.invalidDatatype - Invalid datatype specified

• MPIError.communicationFailed - Communication operation failed

22

• MPIError.operationFailed(operation: String) - Generic operation failure

• MPIError.processSpawnFailed - Failed to spawn processes

• MPIError.connectionFailed - Failed to establish connection

23

