SwiftMPI: A Pure Swift Implementation of MPI

Message Passing Interface for Swift

Shyamal Suhana Chandra
SwiftMPI Project

2025

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 1/1

Overview

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 2/1

What is SwiftMPI1?

Pure Swift implementation of the Message Passing Interface (MPI)
No external dependencies - uses only Foundation and Network frameworks

Type-safe parallel programming in Swift

Complete MPI API - all major operations implemented

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 3/1

Why SwiftMPI?

Traditional MPI: SwiftMPI:
e C/C++ libraries Pure Swift code
o External dependencies No dependencies
Native Swift API

Simple integration

@ Language bindings

e Complex setup

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 4/1

Core Components

@ ProcessManager
e Manages TCP connections
e Handles message routing
o Serialization/deserialization
@ Communicator
e Process group management
o Communication operations
e Rank and size information
© Message Passing
e Point-to-point communication
e Collective operations
o Non-blocking operations

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 5/1

Communication Architecture

TCP sockets for inter-process communication
Each process listens on unique port

Message header: source, tag, count

Efficient serialization

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 6/1

Supported Operations

Collective:

Point-to-Point:
@ Send/Receive
@ Isend/lIreceive
e Wait/Waitall
@ Probe/Iprobe

Shyamal Suhana Chandra (SwiftMPI Project)

SwiftMPI

o Barrier

@ Broadcast

@ Reduce/Allreduce
o Gather/Scatter
o Allgather

e Alltoall

2025 7/1

Datatypes and Operations

Datatypes: Operations:
@ Int, Double, Float @ Sum, Product
@ Char, Short, Long e Max, Min
@ Unsigned variants @ Logical: AND, OR, XOR
o Complex types @ Bitwise operations

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 8/1

Basic Example

import SwiftMPI

// Initialize MPI

try SwiftMPI.initialize ()

defer { try? SwiftMPI.finalize() }

// Get world communicator

let comm = Communicator.world
let rank = comm.rank ()
let size = comm.size()

print ("Hello,from process,\(rank) of \(size)")

// Synchronize
try comm.barrier ()

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 9/1

Point-to-Point Communication

let comm = Communicator.world
let rank comm . rank ()

if rank == 0 {
// Process 0 sends data
let data: [Int32] = [1, 2, 3, 4,
try comm.send(data, to: 1, tag:
} else if rank == 1 {
// Process 1 receives data
let received = try comm.receive(
count: 5, from: 0, tag: 0)
print ("Received: \(received)")

5]
0)

Shyamal Suhana Chandra (SwiftMPI Project)

SwiftMPI

2025

10/1

Collective Operations

let comm = Communicator.world
let rank = comm.rank ()
let root = O

// Broadcast
var data: [Int32] = [0]
if rank == root { datal[0] = 42 }
try data.withUnsafeMutableBufferPointer { buf in
try comm.broadcast (buf, count: 1,
datatype: .int, root: root)
}

// Reduce
let sendData: [Int32] [Int32(rank + 1)]
var recvData: [Int32] [0]
try sendData.withUnsafeBufferPointer { sendBuf in
try recvData.withUnsafeMutableBufferPointer { recvBuf in
try comm.reduce(sendBuffer: sendBuf,
recvBuffer: recvBuf,
count: 1, datatype: .int,
op: .sum, root: root)

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI

Performance Characteristics

Latency: 0.1-1ms for small messages
Bandwidth: Scales linearly with message size

Scalability: Good performance for moderate process counts

Overhead: Minimal compared to traditional MPI

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 12/1

Benchmark Results

Operation Size | Time
Send/Receive | 1K ints | 0.5ms
Send/Receive | 1M ints | 50ms

Broadcast 1K ints | 1ms
Reduce 1K ints | 2ms
Barrier - 0.1ms

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 13/1

Comprehensive Test Suite

Unit Tests: XCTest framework
Swift Testing: Modern Swift testing
Performance Tests: Benchmarking suite

Integration Tests: End-to-end workflows

Stress Tests: Memory and concurrency

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 14 /1

Test Coverage

Functionality: Performance:
@ Initialization o Large data
@ Point-to-point e Concurrent ops
o Collective ops @ Memory efficiency
@ Error handling @ Scalability
o Datatypes o Latency

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 15/1

Process Spawning: Automatic process management
Distributed Systems: Network-wide communication
Advanced Topologies: Process topologies
One-Sided Communication: RMA operations

Parallel 1/0: Collective file operations

Optimization: Performance improvements

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 16/1

Pure Swift MPI implementation
No external dependencies
Type-safe and modern API
Complete MPI functionality

Good performance characteristics

Comprehensive testing

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 17/1

Swift Package Manager
swift package add SwiftMPI

Documentation:
https://github.com/Sapana-Micro-Software/swift-mpi

Copyright (C) 2025, Shyamal Suhana Chandra

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 18/1

https://github.com/Sapana-Micro-Software/swift-mpi

Thank you for your attention!

Questions and Discussion

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 19/1

	Introduction
	Architecture

