
SwiftMPI: A Pure Swift Implementation of MPI
Message Passing Interface for Swift

Shyamal Suhana Chandra

SwiftMPI Project

2025

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 1 / 1

Overview

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 2 / 1

What is SwiftMPI?

Pure Swift implementation of the Message Passing Interface (MPI)
No external dependencies - uses only Foundation and Network frameworks
Type-safe parallel programming in Swift
Complete MPI API - all major operations implemented

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 3 / 1

Why SwiftMPI?

Traditional MPI:
C/C++ libraries
External dependencies
Language bindings
Complex setup

SwiftMPI:
Pure Swift code
No dependencies
Native Swift API
Simple integration

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 4 / 1

Core Components

1 ProcessManager
Manages TCP connections
Handles message routing
Serialization/deserialization

2 Communicator
Process group management
Communication operations
Rank and size information

3 Message Passing
Point-to-point communication
Collective operations
Non-blocking operations

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 5 / 1

Communication Architecture

TCP sockets for inter-process communication
Each process listens on unique port
Message header: source, tag, count
Efficient serialization

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 6 / 1

Supported Operations

Point-to-Point:
Send/Receive
Isend/Ireceive
Wait/Waitall
Probe/Iprobe

Collective:
Barrier
Broadcast
Reduce/Allreduce
Gather/Scatter
Allgather
Alltoall

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 7 / 1

Datatypes and Operations

Datatypes:
Int, Double, Float
Char, Short, Long
Unsigned variants
Complex types

Operations:
Sum, Product
Max, Min
Logical: AND, OR, XOR
Bitwise operations

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 8 / 1

Basic Example

import SwiftMPI

// Initialize MPI
try SwiftMPI.initialize ()
defer { try? SwiftMPI.finalize () }

// Get world communicator
let comm = Communicator.world
let rank = comm.rank()
let size = comm.size()

print("Hello␣from␣process␣\(rank)␣of␣\(size)")

// Synchronize
try comm.barrier ()

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 9 / 1

Point-to-Point Communication

let comm = Communicator.world
let rank = comm.rank()

if rank == 0 {
// Process 0 sends data
let data: [Int32] = [1, 2, 3, 4, 5]
try comm.send(data , to: 1, tag: 0)

} else if rank == 1 {
// Process 1 receives data
let received = try comm.receive(

count: 5, from: 0, tag: 0)
print("Received:␣\(received)")

}

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 10 / 1

Collective Operations

let comm = Communicator.world
let rank = comm.rank()
let root = 0

// Broadcast
var data: [Int32] = [0]
if rank == root { data [0] = 42 }
try data.withUnsafeMutableBufferPointer { buf in

try comm.broadcast(buf , count: 1,
datatype: .int , root: root)

}

// Reduce
let sendData: [Int32] = [Int32(rank + 1)]
var recvData: [Int32] = [0]
try sendData.withUnsafeBufferPointer { sendBuf in

try recvData.withUnsafeMutableBufferPointer { recvBuf in
try comm.reduce(sendBuffer: sendBuf ,

recvBuffer: recvBuf ,
count: 1, datatype: .int ,
op: .sum , root: root)

}
}Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 11 / 1

Performance Characteristics

Latency: 0.1-1ms for small messages
Bandwidth: Scales linearly with message size
Scalability: Good performance for moderate process counts
Overhead: Minimal compared to traditional MPI

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 12 / 1

Benchmark Results

Operation Size Time
Send/Receive 1K ints 0.5ms
Send/Receive 1M ints 50ms
Broadcast 1K ints 1ms
Reduce 1K ints 2ms
Barrier - 0.1ms

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 13 / 1

Comprehensive Test Suite

Unit Tests: XCTest framework
Swift Testing: Modern Swift testing
Performance Tests: Benchmarking suite
Integration Tests: End-to-end workflows
Stress Tests: Memory and concurrency

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 14 / 1

Test Coverage

Functionality:
Initialization
Point-to-point
Collective ops
Error handling
Datatypes

Performance:
Large data
Concurrent ops
Memory efficiency
Scalability
Latency

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 15 / 1

Roadmap

Process Spawning: Automatic process management
Distributed Systems: Network-wide communication
Advanced Topologies: Process topologies
One-Sided Communication: RMA operations
Parallel I/O: Collective file operations
Optimization: Performance improvements

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 16 / 1

Summary

Pure Swift MPI implementation
No external dependencies
Type-safe and modern API
Complete MPI functionality
Good performance characteristics
Comprehensive testing

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 17 / 1

Get Started

Swift Package Manager

swift package add SwiftMPI

Documentation:
https://github.com/Sapana-Micro-Software/swift-mpi

Copyright (C) 2025, Shyamal Suhana Chandra

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 18 / 1

https://github.com/Sapana-Micro-Software/swift-mpi

Questions?

Thank you for your attention!

Questions and Discussion

Shyamal Suhana Chandra (SwiftMPI Project) SwiftMPI 2025 19 / 1

	Introduction
	Architecture

