Comprehensive DNA Sequence Alignment

and Pattern Matching Algorithms

Implementation, Analysis, and Performance Evaluation

Shyamal Suhana Chandra
Sapana Micro Software

December 14, 2025

Shyamal Suhana Chandra, Sapana Micro Software

1/33

@ Introduction

© Algorithms Overview

9 Exact Matching Algorithms

@ Dynamic Programming Algorithms
e Approximate Matching

@ Compression Methods

@ Modern Approaches

© Parallel and Distributed Methods
© Benchmark Results

@ Analysis and Discussion

@ Advanced Algorithms

@ Conclusion

Shyamal Suhana Chandra, Sapana Micro Software 2/33

Human DNA Overview

Haploid genome: 3.2 billion base pairs
Diploid genome: 6.4 billion base pairs
Chromosomes: 23 pairs (46 total)

Coding DNA: Only 1-2% codes for proteins

Challenge: Efficiently search and align sequences

Shyamal Suhana Chandra, Sapana Micro Software 3/33

Problem Statement

Key Challenges

o Finding patterns in large sequences

@ Handling mutations, insertions, deletions
@ Scaling to genome-sized data

e Balancing accuracy and speed

e Managing memory requirements

Our Approach

Comprehensive implementation and analysis of 20+ algorithms covering:
@ Exact and approximate matching
@ Local and global alignment
@ Compression techniques

@ Modern ML approaches
o Parallel /distribit &R T 4/33

Algorithm Categories

Classic Algorithms Advanced Algorithms

@ Exact Match @ Smith-Waterman

@ Naive Search Needleman-Wunsch
@ Rabin-Karp
e KMP

@ Boyer-Moore

Fuzzy Search
WARP-CTC
MCMC Evolution

Modern Approaches

o Embedding Search
o CNN Models
Lightweight LLM
DDMCMC

Parallel/Distributed
faP PPN W B Sh\amal Suhana Chandra, Sapana Micro Software] 5/33

Exact Matching: Performance

Table: Performance Comparison

Algorithm Time (s) Complexity
Exact Match 45 O(n*m)
Naive Search 48 O(n*m)
Rabin-Karp 52 O(n+m) avg
KMP 38 O(n+m)
Boyer-Moore 25 O(n/m) best

Key Findings

@ Boyer-Moore fastest for long patterns
© KMP provides guaranteed linear time

@ Rabin-Karp good for multiple patterns

Shyamal Suhana Chandra, Sapana Micro Software 6 /33

Rabin-Karp Algorithm

Key Features
@ Uses rolling hash for efficient pattern matching

o Average case: O(n+m)
@ Worst case: O(n*m) (hash collisions)

@ Suitable for multiple pattern search

Algorithm
© Calculate hash of pattern
@ Calculate hash of first window

© Slide window, update hash incrementally

© Verify matches (hash collision check)

v

Shyamal Suhana Chandra, Sapana Micro Software 7/33

KMP Algorithm

Key Features

@ Preprocesses pattern to build failure function
@ No backtracking in text

@ Guaranteed O(n+m) time complexity

°

Optimal for single pattern search

4
Failure Function

@ LPS (Longest Proper Prefix which is also Suffix)
@ Precomputed in O(m) time

@ Enables skipping characters in text

Shyamal Suhana Chandra, Sapana Micro Software 8/33

Boyer-Moore Algorithm

© Bad Character: Rightmost occurrence table
@ Good Suffix: Suffix matching table

Performance

| A\

@ Best case: O(n/m) - can skip large portions
@ Worst case: O(n*m)

o Often fastest in practice for long patterns

@ Right-to-left pattern matching

A\

Shyamal Suhana Chandra, Sapana Micro Software 9/33

Smith-Waterman: Local Alignment

Algorithm

@ Finds best matching subsequences

@ Uses dynamic programming matrix
Scoring: match (+2), mismatch (-1), gap (-1)

o
@ Minimum score: 0 (local alignment)
(]

Traceback from maximum score

v
o Finding conserved domains

@ Detecting local similarities

@ Protein domain identification

.

Shyamal Suhana Chandra, Sapana Micro Software 10 / 33

Needleman-Wunsch: Global Alignment

Algorithm

Aligns entire sequences end-to-end
Similar to Smith-Waterman but:

o Initializes first row/column with gaps
o No minimum score (can be negative)
e Traceback from bottom-right

Comparing closely related sequences

Evolutionary analysis

Full sequence comparison

Shyamal Suhana Chandra, Sapana Micro Software 11 /33

Alignment Performance

Table: Alignment Performance

Algorithm 500x500 1000x1000 Memory
Smith-Waterman 12.5ms 50ms O(n*m)
Needleman-Wunsch ~ 15.0ms 60ms O(n*m)

Scaling Characteristics
@ Quadratic time and space complexity

@ Memory becomes limiting factor for large sequences

@ Space-optimized versions available (two-row DP)

Shyamal Suhana Chandra, Sapana Micro Software 12 /33

Fuzzy Search with Edit Distance

Configurable distance threshold

(]
@ Handles insertions, deletions, substitutions
@ Returns positions and distances

[~

Case-insensitive matching

Edit Distance Variants
Levenshtein: Standard edit distance

o Damerau-Levenshtein: Includes transpositions
o DNA-specific: Different costs for transitions vs transversions
o

Hamming: Substitutions only (same length)

Shyamal Suhana Chandra, Sapana Micro Software 13 /33

WARP-CTC Alignment

Connectionist Temporal Classification

Handles sequences with gaps naturally
Extends pattern with blanks: " AT CG"”
Forward-backward algorithm for probabilities
Viterbi decoding for best path

Beam search for top-k paths

Advantages

Probabilistic alignment scores
Handles variable-length patterns
Multiple alignment paths

Suitable for sequences with indels

Shyamal Suhana Chandra, Sapana Micro Software 14 / 33

Grammar-Based Compression

Algorithm

@ Find repeating patterns
@ Build grammar rules
© Replace with references

© Store grammar separately

@ High entropy: Ratio 1.0

o Low entropy: Ratio 0.3-0.5

@ Lossless: Perfect reconstruction

Shyamal Suhana Chandra, Sapana Micro Software 15 /33

Lossy Compression

© Frequency-based: Keep only frequent patterns

@ Pattern approximation: Replace similar patterns

© Truncation: Remove low-entropy regions

Trade-offs
@ Higher compression ratios (0.1-0.3)

@ Information loss
@ Approximate reconstruction
o

Suitable when exact match not required

Shyamal Suhana Chandra, Sapana Micro Software 16 / 33

Embedding-Based Search

Vector Embeddings

@ Convert sequences to fixed-size vectors

@ Methods: hash-based, k-mer, frequency-based
@ Cosine similarity for matching
o

Fast similarity search after indexing

Performance

| \

o Indexing: O(n*d) where d is embedding dimension
@ Search: O(d) per query

@ Suitable for large-scale similarity search

@ Top-k retrieval with threshold filtering

Shyamal Suhana Chandra, Sapana Micro Software 17 / 33

Deep Learning Methods

Lightweight LLM

@ Convolutional layers @ Transformer architecture
@ Feature extraction @ Self-attention mechanism
@ Pattern recognition @ Position encoding

@ Probability-based matching @ Sequence embeddings

Applications

@ Pattern classification
@ Similarity detection

o Feature learning

Shyamal Suhana Chandra, Sapana Micro Software 18 / 33

MCMC Pattern Evolution

Markov Chain Monte Carlo

@ Mutates patterns to find matches

DNA-specific mutations (substitution, insertion, deletion)

Metropolis-Hastings acceptance

Simulated annealing with temperature cooling

Successfully evolves patterns toward matches
Typical iterations: 100-1000
Acceptance rate: 20-40%

Finds patterns not in initial search

v

Shyamal Suhana Chandra, Sapana Micro Software 19 /33

DDMCMC: Data-Driven MCMC

Key Innovation

Uses data distribution to guide sampling

@ Proposal distribution from sequence embeddings
@ Mix of random walk and data-driven proposals
o

Efficient exploration of embedding space

v

Advantages for Vector Data

@ Faster convergence than random walk
@ Focuses on high-likelihood regions

@ Handles high-dimensional spaces well

o Adaptive to data characteristics

Shyamal Suhana Chandra, Sapana Micro Software 20 /33

Parallel Search Methods

Approaches

@ Parallel chunk processing

@ Map-Reduce pattern
@ Work-Stealing

@ Pipeline processing

Scaling Results

Method 2T 4T 8T

Parallel 230s 120s 65s
Work-Steal 220s 110s 58s

Shyamal Suhana Chandra, Sapana Micro Software 21/33

Scaling to Infinity

Design Principles
o Horizontal scaling: Add more workers/nodes
@ Chunk-based: Divide work into independent units
@ No shared state: Each chunk processed independently
@ Merge results: Combine results from all chunks
o

Work-stealing: Adapts to varying workloads

Scalability Characteristics

@ Linear scaling with number of threads/workers
@ Minimal communication overhead
@ Suitable for distributed systems

@ Can scale to petabyte-scale sequences

Shyamal Suhana Chandra, Sapana Micro Software 22 /33

Sequence Complexity Impact

High Entropy (Random)

e Entropy: 2.0 bits (maximum)

@ Performance: Slower (more comparisons)
@ Compression: Low effectiveness (ratio 1.0)
°

Use case: Worst-case performance testing

Low Entropy (Repetitive)
e Entropy: j1.0 bits

Performance: Faster (early matches)

(]
o Compression: High effectiveness (ratio 0.3-0.5)
o

Use case: Best-case performance, repetitive regions

Shyamal Suhana Chandra, Sapana Micro Software 23 /33

Comprehensive Benchmark Results

Shyamal Suhana Chandra, Sapana Micro Software

Table: Performance Summary

Algorithm Time Memory
Exact Match 45s 0O(1)
KMP 38s O(m)
Boyer-Moore 25s O(m)
Fuzzy (d=1) 120s O(m)
Smith-Waterman 50ms O(n*m)
Embedding 5s O(n*d)
CNN 200s o(n)
MCMC 5ms 0O(1)
24 /33

Algorithm Selection Guidelines

Choose Based on Requirements

o Exact match: KMP or Boyer-Moore
Approximate: Fuzzy Search with edit distance
Local similarity: Smith-Waterman
Global alignment: Needleman-Wunsch
Large-scale: Embedding search or parallel methods
Repetitive data: Grammar compression
Pattern evolution: MCMC
Gap handling: WARP-CTC

Shyamal Suhana Chandra, Sapana Micro Software 25 /33

Key Trade-offs

Accuracy vs. Speed

@ Exact: Slower, accurate
@ Heuristic: Faster, may miss
@ Probabilistic: Fast, confidence scores

@ Space-optimized: More computation

@ Full DP: More memory, faster

o Compression: Storage vs. search speed

A\

Shyamal Suhana Chandra, Sapana Micro Software 26 /33

Performance Insights

Key Findings

Boyer-Moore fastest for exact matching (long patterns)
KMP provides guaranteed linear time

Dynamic programming optimal but expensive
Embedding search enables fast similarity search
Compression effective for repetitive sequences

Parallel methods scale linearly

000000

MCMC successfully evolves patterns

© WARP-CTC handles gaps naturally

© Concurrent search provides comprehensive matching
@ Skip-graph enables efficient indexed search

@ Dancing links solves exact cover efficiently

Shyamal Suhana Chandra, Sapana Micro Software

Concurrent Multi-Technique Search

Multiple algorithms in parallel threads
Result combination and consensus Figure: Concurrent vs Sequential

Configurable technique selection

Performance comparison

Shyamal Suhana Chandra, Sapana Micro Software 28 /33

Skip-Graph Hierarchical Indexing

Hierarchical multi-level structure
Hash table for O(1) lookup Figure: Skip-Graph Structure

Pre-cached subsequences

Optimized for long sequences

Shyamal Suhana Chandra, Sapana Micro Software 29 /33

Dancing Links (Algorithm X)

Exact cover problem solving

Doubly-linked circular lists Figure: Dancing Links Structure

Sparse-entropic optimization
Efficient backtracking

Shyamal Suhana Chandra, Sapana Micro Software 30/33

Contributions

Comprehensive implementation of 20+ algorithms
Detailed performance benchmarks

Complexity analysis (high vs. low entropy)

°
°
@ Scalability evaluation (parallel/distributed)
@ Integration of modern techniques

°

Complete open-source implementation

(CYRELCEWENS

Algorithm choice depends on use case

No single algorithm optimal for all scenarios

Modern approaches enable new capabilities

Parallel methods essential for scale

Compression valuE RN R EaTea 31/33

Future Directions

GPU acceleration for dynamic programming
Distributed computing framework integration
Real genomic dataset evaluation

Advanced compression techniques

Hybrid algorithm approaches

Machine learning model training

Cloud-scale deployment

Shyamal Suhana Chandra, Sapana Micro Software 32/33

Thank You!

Questions?

(© 2025, Shyamal Suhana Chandra. All rights reserved.

Shyamal Suhana Chandra, Sapana Micro Software 33/33

	Introduction
	Algorithms Overview
	Exact Matching Algorithms
	Dynamic Programming Algorithms
	Approximate Matching
	Compression Methods
	Modern Approaches
	Parallel and Distributed Methods
	Benchmark Results
	Analysis and Discussion
	Advanced Algorithms
	Conclusion

