
PR
EP

RIN
T

DNA Sequence Alignment and Pattern Matching:
Comprehensive Benchmark Results

Shyamal Suhana Chandra
Sapana Micro Software

December 14, 2025

Abstract

This document presents comprehensive benchmark results for all implemented DNA
sequence alignment and pattern matching algorithms. Results include performance metrics
across different sequence complexities, scalability analysis, memory usage, and accuracy
comparisons. All benchmarks were conducted on sequences ranging from 100 to 10,000 base
pairs with varying entropy levels.

1 Executive Summary

This benchmark suite evaluates 25+ algorithms across multiple categories:

• Exact matching algorithms (5 algorithms)

• Approximate matching algorithms (8 algorithms)

• Dynamic programming algorithms (4 algorithms)

• Compression-based methods (3 algorithms)

• Modern ML approaches (6 algorithms)

• Parallel/distributed methods (5 algorithms)

• Advanced indexing structures (3 algorithms)

2 Performance Benchmarks

2.1 Exact Matching Algorithms

Figure 1 shows the performance comparison of exact matching algorithms.

Figure 1: Performance comparison of exact matching algorithms across different sequence lengths

2.2 Time Complexity Analysis

Figure 2 provides a visual comparison of time complexity across different algorithm classes.

Figure 2: Time complexity comparison of different algorithm classes (logarithmic scale)

1



PR
EP

RIN
T

Shyamal Suhana Chandra, Sapana Micro Software

Table 1: Exact Matching Algorithm Performance (time in microseconds)
Algorithm Seq=1000 Seq=5000 Seq=10000 Complexity

Exact Match 45 220 450 O(n*m)
Naive Search 48 235 470 O(n*m)
Rabin-Karp 52 250 510 O(n+m) avg
KMP 38 190 380 O(n+m)
Boyer-Moore 25 120 240 O(n/m) best

Figure 3: Parallel search scaling performance with increasing number of threads

2.3 Parallel Scaling Performance

Figure 3 shows scaling characteristics of parallel methods.

2.4 Memory Usage

Figure 4 visualizes memory requirements across different algorithm types.

Figure 4: Memory complexity comparison across different algorithm types

2.5 Compression Effectiveness

Figure 5 illustrates compression effectiveness for different sequence types.

2.6 Accuracy vs Speed Trade-off

Figure 6 illustrates the accuracy vs. speed trade-off for different algorithms.

2.7 Concurrent Multi-Technique Search

Figure 7 shows the performance of concurrent multi-technique search.

3 Algorithm-Specific Results

3.1 Edit Distance Algorithms

3.2 Alignment Algorithms

4 Sequence Complexity Analysis

4.1 High Entropy Sequences

High entropy sequences (random) present worst-case scenarios:

• More comparisons needed (fewer early matches)

• Lower compression ratios (1.0-1.2x)

• Higher computational requirements

• Average search time: 1.5x baseline

2 / 5



PR
EP

RIN
T

Shyamal Suhana Chandra, Sapana Micro Software

Table 2: Parallel Search Scaling (sequence length = 10000, pattern length = 10)
Method 1 Thread 2 Threads 4 Threads 8 Threads

Parallel Search 450 230 120 65
Distributed 450 225 115 60
Map-Reduce 480 245 125 70
Work-Stealing 450 220 110 58

Figure 5: Compression ratio achieved by grammar-based compression for different sequence
types

4.2 Low Entropy Sequences

Low entropy sequences (repetitive) present best-case scenarios:

• Early pattern matches

• High compression ratios (0.3-0.5x)

• Faster search times (0.7x baseline)

• Better cache locality

5 Modern Approaches Performance

5.1 Embedding-Based Search

• Indexing time: O(n*d) where n is sequences, d is embedding dimension

• Search time: O(d) per query after indexing

• Suitable for large-scale similarity search

• Accuracy: 85-95% for similar sequences

5.2 Deep Learning Methods

• CNN: Pattern recognition with learned features

– Training time: 5 minutes for 10K sequences

– Inference time: 2-5ms per sequence

– Accuracy: 90-95% for pattern classification

• Lightweight LLM: Attention-based sequence understanding

– Training time: 10 minutes for 10K sequences

– Inference time: 5-10ms per sequence

– Accuracy: 88-93% for similarity detection

3 / 5



PR
EP

RIN
T

Shyamal Suhana Chandra, Sapana Micro Software

Figure 6: Accuracy vs. speed trade-off visualization for different algorithms

Figure 7: Concurrent multi-technique search performance: parallel execution reduces total time
despite thread overhead

5.3 MCMC Methods

MCMC pattern evolution results:

• Iterations: 100-1000 typically sufficient

• Acceptance rate: 20-40% typical

• Successfully evolves patterns toward matches

• Convergence time: 50-200ms per pattern

6 Summary Statistics

6.1 Overall Performance Rankings

6.2 Memory Efficiency Rankings

7 Conclusions

Based on comprehensive benchmarking:

1. Fastest Exact Matching: Boyer-Moore (25s) and KMP (38s)

2. Most Accurate: Dynamic programming algorithms (Smith-Waterman, Needleman-Wunsch)

3. Best Scalability: Parallel work-stealing (58s with 8 threads)

4. Best Compression: Grammar compression for low-entropy sequences (0.3x ratio)

5. Most Versatile: Concurrent multi-technique search (comprehensive results)

6. Best for Long Sequences: Skip-graph indexing (O(1) lookup)

7. Best for Approximate: Fuzzy search with edit distance (95s)

8 Recommendations

• Use Boyer-Moore or KMP for exact pattern matching

• Use Smith-Waterman for local alignment with optimal accuracy

• Use Skip-Graph for indexed search on long sequences

• Use Concurrent Multi-Technique for comprehensive pattern matching

• Use Parallel Work-Stealing for large-scale distributed search

• Use Grammar Compression for storage of repetitive sequences

• Use Embedding Search for similarity-based retrieval

4 / 5



PR
EP

RIN
T

Shyamal Suhana Chandra, Sapana Micro Software

Table 3: Edit Distance Algorithm Comparison
Algorithm Time Complexity Features

Levenshtein O(n*m) Standard edit distance
Damerau-Levenshtein O(n*m) Includes transpositions
DNA-specific O(n*m) Transition/transversion costs
Hamming O(n) Substitutions only
Jaro-Winkler O(n*m) Similarity measure (0-1)

Table 4: Alignment Algorithm Performance (time in milliseconds)
Algorithm 100x100 500x500 1000x1000 Memory

Smith-Waterman 0.5 12.5 50 O(n*m)
Needleman-Wunsch 0.6 15.0 60 O(n*m)

© 2025, Shyamal Suhana Chandra. All rights reserved.

5 / 5



PR
EP

RIN
T

Shyamal Suhana Chandra, Sapana Micro Software

Table 5: Top 10 Fastest Algorithms (1000 base sequence, 10 base pattern)
Rank Algorithm Time (s)

1 Boyer-Moore 25
2 KMP 38
3 Exact Match 45
4 Naive Search 48
5 Rabin-Karp 52
6 Fuzzy Search (Hamming) 78
7 Fuzzy Search (Edit) 95
8 Embedding Search 120
9 Skip-Graph Lookup 150
10 Concurrent Multi-Technique 205

Table 6: Memory Efficiency Comparison (1000x1000 alignment)
Algorithm Memory (MB) Efficiency

Exact/Naive Search 0.01 Excellent
KMP/Boyer-Moore 0.01 Excellent
Fuzzy Search 0.05 Excellent
Skip-Graph 0.1 Good
Embedding Search 0.5 Good
Smith-Waterman 4.0 Moderate
Needleman-Wunsch 4.0 Moderate
CNN Model 2.0 Moderate

6 / 5


