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1 Introduction

This reference manual provides comprehensive documentation for the Progressive Learning
Chess Engine API. The engine implements a hybrid Bayesian-LSTM neural network archi-
tecture with curriculum learning, spaced repetition, and Pavlovian conditioning.

2 Architecture Overview

The system consists of the following major components:

� Neural Network (Hybrid Bayesian + LSTM)

� Curriculum Learning System

� Spaced Repetition System

� Pavlovian Learning System

� Chess Representation

� Training Engine

� Inference Engine

� Multi-Agent Game Framework

3 Neural Network API

3.1 Network Creation

1 NeuralNetwork* nn_create_hybrid(

2 size_t input_size , // Input vector dimension

3 size_t hidden_size , // Hidden layer dimension

4 size_t output_size // Output vector dimension

5 );

Creates a hybrid neural network with one Bayesian layer and one LSTM layer.
Example:

1 NeuralNetwork* nn = nn_create_hybrid (768, 512, 4096);

2 // 768 = 8 812 chess board representation

3 // 512 = hidden layer size

4 // 4096 = possible moves (64 64 )

3.2 Forward Pass

1 void nn_forward(

2 NeuralNetwork* nn ,

3 const double* input , // Input vector

4 double* output // Output vector (pre -allocated)

5 );

Performs forward propagation through the network.

3



Progressive Learning Chess Engine Reference Manual

3.3 Backward Pass

1 void nn_backward(

2 NeuralNetwork* nn ,

3 const double* target , // Target output vector

4 double* loss // Computed loss (output)

5 );

Performs backpropagation and computes mean squared error loss.

3.4 Network Destruction

1 void nn_destroy(NeuralNetwork* nn);

Frees all memory associated with the network.

4 Optimizer API

4.1 Optimizer Types

1 typedef enum {

2 OPTIMIZER_SGD , // Stochastic Gradient Descent

3 OPTIMIZER_ADAM , // Adaptive Moment Estimation

4 OPTIMIZER_ADAGRAD , // Adaptive Gradient

5 OPTIMIZER_RMSPROP // Root Mean Square Propagation

6 } OptimizerType;

4.2 Optimizer Creation

1 Optimizer* optimizer_create(

2 OptimizerType type ,

3 double learning_rate

4 );

4.3 Weight Update

1 void optimizer_update(

2 Optimizer* opt ,

3 NeuralNetwork* nn

4 );

Updates network weights using the specified optimizer algorithm.

5 Curriculum Learning API

5.1 Curriculum Creation

1 Curriculum* curriculum_create(size_t num_levels);

Creates a curriculum with the specified number of difficulty levels (typically 10).
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5.2 Difficulty Levels

1 typedef enum {

2 LEVEL_PRESCHOOL = 0,

3 LEVEL_KINDERGARTEN ,

4 LEVEL_ELEMENTARY ,

5 LEVEL_MIDDLE_SCHOOL ,

6 LEVEL_HIGH_SCHOOL ,

7 LEVEL_UNDERGRAD ,

8 LEVEL_GRADUATE ,

9 LEVEL_MASTER ,

10 LEVEL_GRANDMASTER ,

11 LEVEL_INFINITE

12 } DifficultyLevelEnum;

5.3 Adding Examples

1 void curriculum_add_example(

2 Curriculum* curriculum ,

3 TrainingExample* example ,

4 DifficultyLevelEnum level

5 );

Adds a training example to the specified difficulty level.
TrainingExample structure:

1 typedef struct {

2 double* input; // Input vector

3 double* target; // Target output vector

4 double difficulty; // Difficulty score (0.0 -1.0)

5 size_t input_size;

6 size_t target_size;

7 bool is_correct; // For spaced repetition

8 size_t attempts;

9 size_t correct_streak;

10 double last_reviewed;

11 double next_review;

12 } TrainingExample;

5.4 Level Advancement

1 bool curriculum_should_advance(

2 Curriculum* curriculum ,

3 double accuracy // Current accuracy (0.0 -1.0)

4 );

Returns true if accuracy meets the mastery threshold (default 0.85).

1 void curriculum_advance_level(Curriculum* curriculum);

Advances to the next difficulty level.

1 DifficultyLevelEnum curriculum_get_current_level(

2 Curriculum* curriculum

3 );

Returns the current difficulty level.
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6 Spaced Repetition API

6.1 System Creation

1 SpacedRepetition* spaced_repetition_create(

2 size_t capacity , // Maximum number of examples

3 double ltm_threshold // Correct streak for LTM (default 5.0)

4 );

6.2 Adding Examples

1 void spaced_repetition_add_example(

2 SpacedRepetition* sr ,

3 TrainingExample* example

4 );

6.3 Getting Next Review

1 TrainingExample* spaced_repetition_get_next_review(

2 SpacedRepetition* sr

3 );

Returns the example that is due for review (next review ≤ current time).

6.4 Updating After Review

1 void spaced_repetition_update_example(

2 SpacedRepetition* sr ,

3 size_t index , // Example index

4 bool is_correct // Review result

5 );

Updates the example based on review result and calculates next review interval using expo-
nential spacing.

6.5 Long-Term Memory Check

1 bool spaced_repetition_is_in_ltm(

2 SpacedRepetition* sr ,

3 size_t index

4 );

Returns true if the example has reached long-term memory (correct streak ≥ ltm threshold).

7 Pavlovian Learning API

7.1 Learner Creation

1 typedef enum {

2 PAVLOVIAN_CLASSICAL_CONDITIONING ,

3 PAVLOVIAN_REWARD_BASED ,

4 PAVLOVIAN_INSTRUMENTAL ,

5 PAVLOVIAN_HYBRID

6 } PavlovianType;

7

8 PavlovianLearner* pavlovian_learner_create(
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9 PavlovianType type ,

10 double learning_rate

11 );

7.2 Stimulus Structures

1 typedef struct {

2 double* stimulus_vector;

3 size_t stimulus_size;

4 double intensity;

5 double timestamp;

6 size_t occurrence_count;

7 } ConditionedStimulus;

8

9 typedef struct {

10 double* stimulus_vector;

11 size_t stimulus_size;

12 double reward_value; // Positive or negative

13 double intensity;

14 double timestamp;

15 } UnconditionedStimulus;

7.3 Pairing Stimuli

1 void pavlovian_pair_stimuli(

2 PavlovianLearner* learner ,

3 const ConditionedStimulus* cs ,

4 const UnconditionedStimulus* us

5 );

Pairs a conditioned stimulus (e.g., chess position) with an unconditioned stimulus (e.g.,
reward/punishment) using the Rescorla-Wagner model.

7.4 Getting Expected Reward

1 double pavlovian_get_expected_reward(

2 PavlovianLearner* learner ,

3 const ConditionedStimulus* cs

4 );

Returns the expected reward value for a given conditioned stimulus based on learned asso-
ciations.

7.5 Extinction

1 void pavlovian_extinction(

2 PavlovianLearner* learner ,

3 const ConditionedStimulus* cs

4 );

Performs extinction by presenting CS without US, causing association strength to decay.

8 Chess Representation API

8.1 Position Creation

1 ChessPosition* chess_position_create(void);
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Creates a new chess position initialized to the starting position.

1 ChessPosition* chess_position_from_fen(const char* fen);

Creates a chess position from a FEN string.
Example:

1 const char* start_fen =

2 "rnbqkbnr/pppppppp /8/8/8/8/ PPPPPPPP/RNBQKBNR w KQkq - 0 1";

3 ChessPosition* pos = chess_position_from_fen(start_fen);

8.2 FEN Conversion

1 void chess_position_to_fen(

2 ChessPosition* pos ,

3 FENString* fen // Output FEN string

4 );

8.3 Matrix Conversion

1 void chess_position_to_matrix(

2 ChessPosition* pos ,

3 double* matrix // 8 812 output matrix

4 );

Converts position to a 3D matrix where each 8Ö8 plane represents one piece type and color
combination.

8.4 Move Operations

1 void chess_position_generate_moves(

2 ChessPosition* pos ,

3 Color color , // WHITE or BLACK

4 ChessMove* moves , // Output array

5 size_t* num_moves // Number of moves generated

6 );

1 bool chess_position_is_legal_move(

2 ChessPosition* pos ,

3 const ChessMove* move

4 );

1 void chess_position_make_move(

2 ChessPosition* pos ,

3 const ChessMove* move

4 );

1 void chess_position_unmake_move(ChessPosition* pos);

9 Training Engine API

9.1 Configuration

1 typedef struct {

2 OptimizerType optimizer_type;

3 double learning_rate;

4 double momentum;

5 double weight_decay;
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6 size_t batch_size;

7 size_t max_epochs;

8 double early_stopping_threshold;

9 bool use_curriculum;

10 bool use_pavlovian;

11 bool use_spaced_repetition;

12 double mastery_threshold;

13 size_t patience;

14 } TrainingConfig;

9.2 Engine Creation

1 TrainingEngine* training_engine_create(

2 NeuralNetwork* nn ,

3 TrainingConfig* config

4 );

9.3 Training

1 void training_engine_train_with_curriculum(

2 TrainingEngine* engine

3 );

Trains the network using curriculum learning, Pavlovian conditioning, and spaced repetition
as configured.

9.4 Statistics

1 typedef struct {

2 double current_loss;

3 double average_loss;

4 double accuracy;

5 size_t epoch;

6 size_t examples_seen;

7 DifficultyLevelEnum current_level;

8 double training_time;

9 double validation_accuracy;

10 } TrainingStats;

11

12 TrainingStats* training_engine_get_stats(

13 TrainingEngine* engine

14 );

10 Inference Engine API

10.1 Engine Creation

1 InferenceEngine* inference_engine_create(NeuralNetwork* nn);

10.2 Position Evaluation

1 double inference_engine_evaluate_position(

2 InferenceEngine* engine ,

3 const ChessPosition* pos

4 );

Returns an evaluation score for the position (positive favors white, negative favors black).
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10.3 Move Prediction

1 ChessMove* inference_engine_predict_move(

2 InferenceEngine* engine ,

3 const ChessPosition* pos

4 );

Predicts the best move for the current position.

10.4 Search

1 ChessMove* inference_engine_search_move(

2 InferenceEngine* engine ,

3 const ChessPosition* pos ,

4 size_t depth // Search depth

5 );

Performs minimax search to specified depth.

11 Multi-Agent Game API

11.1 Game Types

1 typedef enum {

2 GAME_CHESS ,

3 GAME_FOOTBALL ,

4 GAME_BASKETBALL ,

5 GAME_BASEBALL ,

6 GAME_HOCKEY ,

7 GAME_SOCCER ,

8 GAME_TENNIS ,

9 GAME_GENERIC

10 } GameType;

11.2 Game Creation

1 MultiAgentGame* multi_agent_game_create(

2 GameType game_type ,

3 size_t num_agents

4 );

11.3 Agent Management

1 Agent* agent_create(

2 size_t agent_id ,

3 AgentType type ,

4 size_t action_space_size

5 );

11.4 Chess as Multi-Agent

1 MultiAgentGame* chess_as_multi_agent_create(void);

Creates a chess game where white and black are separate agents.
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12 Usage Examples

12.1 Basic Training Example

1 // Create network

2 NeuralNetwork* nn = nn_create_hybrid (768, 512, 4096);

3

4 // Configure training

5 TrainingConfig config;

6 config.optimizer_type = OPTIMIZER_ADAM;

7 config.learning_rate = 0.001;

8 config.use_curriculum = true;

9 config.use_pavlovian = true;

10 config.use_spaced_repetition = true;

11 config.max_epochs = 100;

12

13 // Create training engine

14 TrainingEngine* engine = training_engine_create(nn, &config);

15

16 // Train

17 training_engine_train_with_curriculum(engine);

18

19 // Get statistics

20 TrainingStats* stats = training_engine_get_stats(engine);

21 printf("Accuracy: %.2f%%, Level: %d\n",

22 stats ->accuracy * 100, stats ->current_level);

23

24 // Cleanup

25 training_engine_destroy(engine);

12.2 Position Evaluation Example

1 // Create inference engine

2 NeuralNetwork* nn = nn_create_hybrid (768, 512, 4096);

3 InferenceEngine* engine = inference_engine_create(nn);

4

5 // Load position

6 ChessPosition* pos = chess_position_from_fen(

7 "rnbqkbnr/pppppppp /8/8/8/8/ PPPPPPPP/RNBQKBNR w KQkq - 0 1"

8 );

9

10 // Evaluate

11 double eval = inference_engine_evaluate_position(engine , pos);

12 printf("Position evaluation: %.4f\n", eval);

13

14 // Predict move

15 ChessMove* move = inference_engine_predict_move(engine , pos);

16 printf("Best move: %d -> %d\n", move ->from , move ->to);

17

18 // Cleanup

19 chess_position_destroy(pos);

20 inference_engine_destroy(engine);

12.3 Curriculum Learning Example

1 // Create curriculum

2 Curriculum* curriculum = curriculum_create (10);

3

4 // Add examples at different levels
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5 TrainingExample example;

6 example.input_size = 768;

7 example.target_size = 4096;

8 example.input = new double [768];

9 example.target = new double [4096];

10 // ... populate example ...

11

12 curriculum_add_example(curriculum , &example , LEVEL_PRESCHOOL);

13

14 // Train and check advancement

15 double accuracy = 0.90;

16 if (curriculum_should_advance(curriculum , accuracy)) {

17 curriculum_advance_level(curriculum);

18 DifficultyLevelEnum level = curriculum_get_current_level(curriculum);

19 printf("Advanced to level %d\n", level);

20 }

21

22 curriculum_destroy(curriculum);

13 Error Handling

All functions that return pointers return NULL on failure. Functions that modify state should
be checked for success. Memory management follows standard C++ patterns: objects created
with create functions must be destroyed with corresponding destroy functions.

14 Thread Safety

The current implementation is not thread-safe. Concurrent access to the same network, cur-
riculum, or training engine from multiple threads requires external synchronization.

15 Performance Considerations

� Network forward/backward passes are O(n × m) where n is input size and m is hidden
size

� Curriculum level advancement is O(1)

� Spaced repetition review selection is O(k) where k is number of examples

� Position evaluation is O(1) after network forward pass

� Move search is O(bd) where b is branching factor and d is depth

16 Memory Management

All dynamically allocated memory is managed by the library. Users should:

� Always call destroy functions for created objects

� Not free memory returned by the library

� Copy data if persistence beyond object lifetime is needed

17 Version History

� Version 1.0 (Current): Initial release with full API
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18 License

Copyright (C) 2025, Shyamal Suhana Chandra. All rights reserved.
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