Complete API Documentation

Reference Manual: Lossless Bayesian Network

Shyamal Chandra

2025

Abstract

This reference manual provides complete API documentation for the Lossless Bayesian
Network implementation. It includes detailed descriptions of all classes, methods, parame-
ters, return values, and usage examples.

Contents
1__Introductionl 3
2 Header Files 3
DT T0dOIDD] - -« o o e e e 3
D3 GDEIDD] - - o o e e 3
[2.3 bayesian network.hpp|o 3
3 Node Class| 3
BIOVerviewl oo v v oo 3
B2 Public Membersl. 3
B3 Constructors 3
3.3.1 Node()|. o o o 3
3.3.2 Node(const std::string& nodeName, const std::vector<std::string >& nodeStates)| 3
3.4 Methodsl 4
3.4.1 getStateIndex(const std::string& stateName) const| 4
3.4.2 hasState(const std::string& stateName) const| 4
3.4.3 getNumStates() const| o 4
3.4.4 addParent(const std::string& parentld)|.o 4
3.4.5 removeParent(const std::string& parentld) o000 4
3.4.6 hasParent(const std::string& parentld) const| 4
3.4.7 getNumParents() const|{. o000 00000 5
[4 ConditionalProbabilityTable Class| 5
T OVeIvIEWl . . . o oo e 5
42 Constructors 5
4.2.1 ConditionalProbabilityTable()|. 5
4.2.2 ConditionalProbabilityTable(const std::vector<size t>& dims)| 5
4.3 Methodsl)
[4.3.1 setProbability(const std::vector<size t>& parentStates, size tnodeState, |
| double prob)[. 5
[4.3.2 getProbability(const std::vector<size t>& parentStates, size t nodeState) |
[constl. 6
4.3.3 mnormalize()| 6
4.3.4 isValid(double tolerance = le-6) const| 6

4.3.5 getDimensions() const| oL 6

4.3.6 getTotalSize() const| 6

[6 BayesianNetwork Class| 6
BT Overviewl o oo 6
0.2 Constructors] L 7
[5.2.1 BayesianNetwork()| o 7

0.3 Network Construction Methods 7
[5.3.1 addNode(const std::string& nodeld, const std::string& nodeName, const |

| std::vector<std::string>& states)| 7
[5.3.2 addEdge(const std::string& parentld, const std::stringd& childId)] 7

[5.3.3 setCPT(const std::string& nodeld, const ConditionalProbabilityTable& cpt)| 7

(.4 Tnference Methodsl oo 8

[5.4.1 getConditionalProbability(const std::string& nodeld, const std::string& |
| nodeState, const std::map<std::string, std::string>& parentStates) const|. 8
[5.4.2 computeJointProbability(const std::map<std::string, std::string>& assign- |

| ment) CONSt| 8
[5.4.3 variableElimination(const std::vector<std::string >& queryNodes, const std::map<std::string,
| std:string>& evidence) const| Lo Lo 8
5.5 Utility Methods| 9
5.5.1 getNode(const std::string& nodeld) const| 9
5.5.2 getNodelds() const| Lo 9
[5.5.3 generateAssignments(const std::vector<std::string >& nodelds, std::vector<std:jmap<std::strin
| std::string™>& assignments) const|o L 9
[5.6 File I/O Methodsl 9
[0.6.1 saveToFile(const std::stringd filename) const| 9
[5.6.2 ToadFromFile(const std::string& filename)| 9
(6 Error Handling| 10
[7 Usage Examples| 10
[7.1 Complete Example] 10
I8 Performance Notes| 11
[9 Copyright| 11

1 Introduction

This reference manual documents the complete API of the Lossless Bayesian Network imple-
mentation. All classes, methods, and their usage are described in detail.

2 Header Files

2.1 node.hpp

Defines the Node class representing a variable in the Bayesian network.

2.2 cpt.hpp

Defines the ConditionalProbabilityTable class for storing conditional probability distribu-
tions.

2.3 bayesian network.hpp

Defines the BayesianNetwork class, the main interface for working with Bayesian networks.

3 Node Class

3.1 Overview

The Node class represents a variable in the Bayesian network with its possible states and parent
relationships.

3.2 Public Members

Member Type Description

name std: :string| Variable name identifier

states std: :vectorkdedtostf jmgsible state names

parentIds std: :set<stdSestafipgpent node IDs

stateIndexMap std: :map<std Mapding), state names to indices
int>

3.3 Constructors
3.3.1 Node()

Default constructor. Creates an empty node.
Parameters: None
Returns: Node instance

3.3.2 Node(const std::string& nodeName, const std::vector<std::string>& nodeStates)

Constructor with name and states.
Parameters:

e nodeName: Name of the node
e nodeStates: Vector of possible state names

Returns: Node instance with initialized states

3.4 Methods
3.4.1 getStateIndex(const std::string& stateName) const

Get the index of a state by name.
Parameters:

e stateName: Name of the state

Returns: Index of the state (0-based), or -1 if not found
Example:

Node node("Disease", {"Nomne", "Cold", "Flu"});
int idx = node.getStateIndex("Cold"); // Returns 1

3.4.2 hasState(const std::string& stateName) const

Check if a state exists.
Parameters:

e stateName: Name of the state

Returns: true if state exists, false otherwise

3.4.3 getNumStates() const

Get number of possible states.
Parameters: None
Returns: Number of states

3.4.4 addParent(const std::string& parentld)

Add a parent node.
Parameters:

e parentId: ID of the parent node

Returns: void

3.4.5 removeParent(const std::string& parentId)

Remove a parent node.
Parameters:

e parentId: ID of the parent node

Returns: void

3.4.6 hasParent(const std::string& parentld) const

Check if node has a specific parent.
Parameters:

e parentId: ID of the parent node

Returns: true if parent exists, false otherwise

[

3.4.7 getNumParents() const

Get number of parent nodes.
Parameters: None
Returns: Number of parents

4 ConditionalProbabilityTable Class

4.1 Overview

The ConditionalProbabilityTable class stores conditional probabilities in a lossless, exact
representation using multi-dimensional indexing.

4.2 Constructors

4.2.1 ConditionalProbabilityTable()

Default constructor. Creates an empty CPT.
Parameters: None
Returns: CPT instance

4.2.2 ConditionalProbabilityTable(const std::vector<size t>& dims)

Constructor with dimensions.
Parameters:

e dims: Vector of dimensions (last is node, others are parents)

Returns: CPT instance with initialized dimensions
Example:

// CPT for node with 2 parents (3 states each) and 2 node states
std::vector<size_t> dims = {3, 3, 2};
ConditionalProbabilityTable cpt(dims);

4.3 Methods

4.3.1 setProbability(const std::vector<size t>& parentStates, size t nodeState,
double prob)

Set probability for given parent and node state indices.
Parameters:

e parentStates: Vector of parent state indices
e nodeState: Index of node state
e prob: Probability value (must be in [0, 1])

Returns: void
Throws: std::runtime_error if probability is out of range or indices are invalid
Example:

// P(node=1 | parentl=0, parent2=2) = 0.75
cpt.setProbability ({0, 2}, 1, 0.75);

4.3.2 getProbability(const std::vector<size t>& parentStates, size t nodeState)
const

Get probability for given parent and node state indices.
Parameters:

e parentStates: Vector of parent state indices
e nodeState: Index of node state

Returns: Probability value
Throws: std: :runtime_error if indices are invalid

4.3.3 normalize()

Normalize probabilities for each parent configuration. Ensures each conditional distribution
sums to 1.0.

Parameters: None

Returns: void

Example:

cpt.setProbability ({0}, 0, 0.6);
cpt.setProbability ({0}, 1, 0.4);
cpt.normalize(); // Ensures sum = 1.0

4.3.4 isValid(double tolerance = le-6) const

Validate that all conditional distributions sum to 1.0.
Parameters:

e tolerance: Tolerance for floating point comparison (default: 1e-6)

Returns: true if valid, false otherwise

4.3.5 getDimensions() const

Get dimensions of the CPT.
Parameters: None
Returns: Vector of dimensions

4.3.6 getTotalSize() const

Get total number of probability entries.
Parameters: None
Returns: Total size

5 BayesianNetwork Class

5.1 Overview

The BayesianNetwork class is the main interface for working with Bayesian networks. It provides
network construction, inference, and I/O capabilities.

5.2 Constructors
5.2.1 BayesianNetwork()

Default constructor. Creates an empty network.
Parameters: None
Returns: BayesianNetwork instance

5.3 Network Construction Methods

5.3.1 addNode(const std::string& nodeld, const std::string& nodeName, const
std::vector<std::string>& states)

Add a node to the network.
Parameters:

e nodeId: Unique identifier for the node
e nodeName: Name of the node
e states: Vector of possible state names

Returns: void
Throws: std::runtime_error if node ID already exists
Example:

network.addNode ("Disease", "Disease", {"None", "Cold", "Flu"});

5.3.2 addEdge(const std::string& parentld, const std::string& childId)

Add an edge from parent to child.
Parameters:

e parentId: ID of parent node
e childId: ID of child node

Returns: void
Throws: std::runtime_error if:

e Parent or child node does not exist
e Adding edge would create a cycle

e Attempting to add self-loop

Example:

network.addEdge ("Disease", "Symptom");

5.3.3 setCPT(const std::string& nodeld, const ConditionalProbabilityTable& cpt)

Set conditional probability table for a node.
Parameters:

e nodeId: ID of the node
e cpt: Conditional probability table

Returns: void
Throws: std: :runtime_error if node does not exist

5.4 Inference Methods

5.4.1 getConditionalProbability(const std::string& nodeld, const std::string& nodeState,
const std::map<std::string, std::string>& parentStates) const

Get conditional probability.
Parameters:

e nodeId: ID of the node
e nodeState: State of the node
e parentStates: Map of parent IDs to their states

Returns: Conditional probability P(nodeState | parentStates)
Throws: std::runtime_error if:

e Node does not exist
e CPT not set for node
e Missing or invalid parent states
e Invalid node state
5.4.2 computeJointProbability(const std::map<std::string, std::string>& assign-
ment) const

Compute joint probability for a full assignment.
Parameters:

e assignment: Map of node IDs to their states

Returns: Joint probability P(assignment)
Throws: std::runtime_error if assignment is incomplete
Example:

e oW N e

std::map<std::string, std::string> assignment;

assignment ["Disease"] = "Flu";

assignment ["Symptom"] = "Yes";

double prob = network.computeJointProbability (assignment) ;

5.4.3 variableElimination(const std::vector<std::string>& queryNodes, const std::map<std::str
std::string>& evidence) const

Variable elimination for exact inference.
Parameters:

e queryNodes: Vector of node IDs to query
e evidence: Map of observed node IDs to their states

Returns: Map from query assignments to their probabilities (normalized)
Example:

N

std::map<std::string, std::string> evidence;

evidence ["Symptom"] = "Yes";

std::vector<std::string> query = {"Disease"};

auto results = network.variableElimination(query, evidence);

5.5 Utility Methods
5.5.1 getNode(const std::string& nodeld) const

Get node by ID.
Parameters:

e nodeId: ID of the node

Returns: Const reference to the node

Throws: std: :runtime_error if node does not exist
5.5.2 getNodelds() const

Get all node IDs.
Parameters: None
Returns: Vector of node IDs

5.5.3 generateAssignments(const std::vector<std::string>& nodelds, std::vector<std::map<std
std::string™>& assignments) const

Generate all possible assignments for given nodes.
Parameters:

e nodeIds: Vector of node IDs
e assignments: Output vector of assignments

Returns: void
Throws: std::runtime_error if any node does not exist

5.6 File I/O Methods
5.6.1 saveToFile(const std::string& filename) const

Save network to file.
Parameters:

e filename: Output filename

Returns: void
Throws: std::runtime_error if file cannot be opened

5.6.2 loadFromFile(const std::string& filename)

Load network from file.
Parameters:

e filename: Input filename

Returns: void
Throws: std: :runtime_error if file cannot be loaded

10

[

© 0 ~ =] ot - W

W oW W W W W W W NN NN NN NN NN B R s el e e
N O s W E O W o0 O U e W NN O YW U e W N = O

6 Error Handling

All methods that can fail throw std: :runtime_error exceptions with descriptive error messages.

Common error conditions include:

Node does not exist

Invalid state names

Cycle detection (invalid DAG)
Invalid probability values
Missing CPTs

File I/O errors

7 Usage Examples

7.1

Complete Example

#include "bayesian_network.hpp"
#include <iostream>

int

main () {
BayesianNetwork network;

// Add nodes

network.addNode ("Disease", "Disease", {"None", "Cold",

network.addNode ("Symptom", "Fever", {"No", "Yes"});

// Add edge
network.addEdge ("Disease", "Symptom");

// Create CPT

std::vector<size_t> dims = {3, 2};
ConditionalProbabilityTable cpt(dims);
cpt.setProbability ({0}, 0, 0.9); // P(No|None)
cpt.setProbability ({0}, , 0.1); // P(Yes|None)
cpt.setProbability ({1}, 0, 0.7); // P(No|Cold)
cpt.setProbability ({1}, 0.3); // P(Yes|Cold)
cpt.setProbability ({2}, 0.2); // P(Nol|Flu)
cpt.setProbability ({2}, 0.8); // P(Yes|Flu)
cpt.normalize () ;

network.setCPT("Symptom", cpt);

>

B

O O

B

// Prior for Disease

std::vector<size_t> diseaseDims = {3};
ConditionalProbabilityTable diseaseCPT(diseaseDims) ;
diseaseCPT.setProbability ({}, 0, 0.7);
diseaseCPT.setProbability ({}, 1, 0.2);
diseaseCPT.setProbability ({}, 2, 0.1);
diseaseCPT.normalize () ;

network.setCPT("Disease", diseaseCPT);

// Inference

std::map<std::string, std::string> evidence;
evidence ["Symptom"] = "Yes";

11

"Flu"}) ;

38
39
40
41
42
43
44
45
46
47
48

std::vector<std::string> query = {"Disease"};

auto results = network.variableElimination(query, evidence);

// Display results
for (const auto& pair : results) {

std::cout << "P(Disease=" << pair.first.at("Disease")

<< "),=," << pair.second << std::endl;

return O;

8 Performance Notes

e Variable elimination has exponential time complexity in the worst case
e CPT storage is exponential in the number of parents
e Topological ordering minimizes computation during inference

e State lookup is O(1) via hash maps

9 Copyright

Copyright (C) 2025, Shyamal Chandra

12

	Introduction
	Header Files
	node.hpp
	cpt.hpp
	bayesian_network.hpp

	Node Class
	Overview
	Public Members
	Constructors
	Node()
	Node(const std::string& nodeName, const std::vector<std::string>& nodeStates)

	Methods
	getStateIndex(const std::string& stateName) const
	hasState(const std::string& stateName) const
	getNumStates() const
	addParent(const std::string& parentId)
	removeParent(const std::string& parentId)
	hasParent(const std::string& parentId) const
	getNumParents() const

	ConditionalProbabilityTable Class
	Overview
	Constructors
	ConditionalProbabilityTable()
	ConditionalProbabilityTable(const std::vector<size_t>& dims)

	Methods
	setProbability(const std::vector<size_t>& parentStates, size_t nodeState, double prob)
	getProbability(const std::vector<size_t>& parentStates, size_t nodeState) const
	normalize()
	isValid(double tolerance = 1e-6) const
	getDimensions() const
	getTotalSize() const

	BayesianNetwork Class
	Overview
	Constructors
	BayesianNetwork()

	Network Construction Methods
	addNode(const std::string& nodeId, const std::string& nodeName, const std::vector<std::string>& states)
	addEdge(const std::string& parentId, const std::string& childId)
	setCPT(const std::string& nodeId, const ConditionalProbabilityTable& cpt)

	Inference Methods
	getConditionalProbability(const std::string& nodeId, const std::string& nodeState, const std::map<std::string, std::string>& parentStates) const
	computeJointProbability(const std::map<std::string, std::string>& assignment) const
	variableElimination(const std::vector<std::string>& queryNodes, const std::map<std::string, std::string>& evidence) const

	Utility Methods
	getNode(const std::string& nodeId) const
	getNodeIds() const
	generateAssignments(const std::vector<std::string>& nodeIds, std::vector<std::map<std::string, std::string>& assignments) const

	File I/O Methods
	saveToFile(const std::string& filename) const
	loadFromFile(const std::string& filename)

	Error Handling
	Usage Examples
	Complete Example

	Performance Notes
	Copyright

