
Complete API Documentation

1

Reference Manual: Lossless Bayesian Network

Shyamal Chandra

2025

Abstract

This reference manual provides complete API documentation for the Lossless Bayesian
Network implementation. It includes detailed descriptions of all classes, methods, parame-
ters, return values, and usage examples.

Contents

1 Introduction 3

2 Header Files 3
2.1 node.hpp . 3
2.2 cpt.hpp . 3
2.3 bayesian_network.hpp . 3

3 Node Class 3
3.1 Overview . 3
3.2 Public Members . 3
3.3 Constructors . 3

3.3.1 Node() . 3
3.3.2 Node(const std::string& nodeName, const std::vector<std::string>& nodeStates) 3

3.4 Methods . 4
3.4.1 getStateIndex(const std::string& stateName) const 4
3.4.2 hasState(const std::string& stateName) const 4
3.4.3 getNumStates() const . 4
3.4.4 addParent(const std::string& parentId) . 4
3.4.5 removeParent(const std::string& parentId) 4
3.4.6 hasParent(const std::string& parentId) const 4
3.4.7 getNumParents() const . 5

4 ConditionalProbabilityTable Class 5
4.1 Overview . 5
4.2 Constructors . 5

4.2.1 ConditionalProbabilityTable() . 5
4.2.2 ConditionalProbabilityTable(const std::vector<size_t>& dims) 5

4.3 Methods . 5
4.3.1 setProbability(const std::vector<size_t>& parentStates, size_t nodeState,

double prob) . 5
4.3.2 getProbability(const std::vector<size_t>& parentStates, size_t nodeState)

const . 6
4.3.3 normalize() . 6
4.3.4 isValid(double tolerance = 1e-6) const . 6

2

4.3.5 getDimensions() const . 6
4.3.6 getTotalSize() const . 6

5 BayesianNetwork Class 6
5.1 Overview . 6
5.2 Constructors . 7

5.2.1 BayesianNetwork() . 7
5.3 Network Construction Methods . 7

5.3.1 addNode(const std::string& nodeId, const std::string& nodeName, const
std::vector<std::string>& states) . 7

5.3.2 addEdge(const std::string& parentId, const std::string& childId) 7
5.3.3 setCPT(const std::string& nodeId, const ConditionalProbabilityTable& cpt) 7

5.4 Inference Methods . 8
5.4.1 getConditionalProbability(const std::string& nodeId, const std::string&

nodeState, const std::map<std::string, std::string>& parentStates) const . 8
5.4.2 computeJointProbability(const std::map<std::string, std::string>& assign-

ment) const . 8
5.4.3 variableElimination(const std::vector<std::string>& queryNodes, const std::map<std::string,

std::string>& evidence) const . 8
5.5 Utility Methods . 9

5.5.1 getNode(const std::string& nodeId) const 9
5.5.2 getNodeIds() const . 9
5.5.3 generateAssignments(const std::vector<std::string>& nodeIds, std::vector<std::map<std::string,

std::string>& assignments) const . 9
5.6 File I/O Methods . 9

5.6.1 saveToFile(const std::string& filename) const 9
5.6.2 loadFromFile(const std::string& filename) 9

6 Error Handling 10

7 Usage Examples 10
7.1 Complete Example . 10

8 Performance Notes 11

9 Copyright 11

3

1 Introduction

This reference manual documents the complete API of the Lossless Bayesian Network imple-
mentation. All classes, methods, and their usage are described in detail.

2 Header Files

2.1 node.hpp

Defines the Node class representing a variable in the Bayesian network.

2.2 cpt.hpp

Defines the ConditionalProbabilityTable class for storing conditional probability distribu-
tions.

2.3 bayesian_network.hpp

Defines the BayesianNetwork class, the main interface for working with Bayesian networks.

3 Node Class

3.1 Overview

The Node class represents a variable in the Bayesian network with its possible states and parent
relationships.

3.2 Public Members

Member Type Description
name std::string Variable name identifier
states std::vector<std::string>Vector of possible state names
parentIds std::set<std::string>Set of parent node IDs
stateIndexMap std::map<std::string,

int>
Map from state names to indices

3.3 Constructors

3.3.1 Node()

Default constructor. Creates an empty node.
Parameters: None
Returns: Node instance

3.3.2 Node(const std::string& nodeName, const std::vector<std::string>& nodeStates)

Constructor with name and states.
Parameters:

• nodeName: Name of the node

• nodeStates: Vector of possible state names

Returns: Node instance with initialized states

4

3.4 Methods

3.4.1 getStateIndex(const std::string& stateName) const

Get the index of a state by name.
Parameters:

• stateName: Name of the state

Returns: Index of the state (0-based), or -1 if not found
Example:

1 Node node("Disease", {"None", "Cold", "Flu"});
2 int idx = node.getStateIndex("Cold"); // Returns 1

3.4.2 hasState(const std::string& stateName) const

Check if a state exists.
Parameters:

• stateName: Name of the state

Returns: true if state exists, false otherwise

3.4.3 getNumStates() const

Get number of possible states.
Parameters: None
Returns: Number of states

3.4.4 addParent(const std::string& parentId)

Add a parent node.
Parameters:

• parentId: ID of the parent node

Returns: void

3.4.5 removeParent(const std::string& parentId)

Remove a parent node.
Parameters:

• parentId: ID of the parent node

Returns: void

3.4.6 hasParent(const std::string& parentId) const

Check if node has a specific parent.
Parameters:

• parentId: ID of the parent node

Returns: true if parent exists, false otherwise

5

3.4.7 getNumParents() const

Get number of parent nodes.
Parameters: None
Returns: Number of parents

4 ConditionalProbabilityTable Class

4.1 Overview

The ConditionalProbabilityTable class stores conditional probabilities in a lossless, exact
representation using multi-dimensional indexing.

4.2 Constructors

4.2.1 ConditionalProbabilityTable()

Default constructor. Creates an empty CPT.
Parameters: None
Returns: CPT instance

4.2.2 ConditionalProbabilityTable(const std::vector<size_t>& dims)

Constructor with dimensions.
Parameters:

• dims: Vector of dimensions (last is node, others are parents)

Returns: CPT instance with initialized dimensions
Example:

1 // CPT for node with 2 parents (3 states each) and 2 node states
2 std::vector <size_t > dims = {3, 3, 2};
3 ConditionalProbabilityTable cpt(dims);

4.3 Methods

4.3.1 setProbability(const std::vector<size_t>& parentStates, size_t nodeState,
double prob)

Set probability for given parent and node state indices.
Parameters:

• parentStates: Vector of parent state indices

• nodeState: Index of node state

• prob: Probability value (must be in [0, 1])

Returns: void
Throws: std::runtime_error if probability is out of range or indices are invalid
Example:

1 // P(node=1 | parent1=0, parent2 =2) = 0.75
2 cpt.setProbability ({0, 2}, 1, 0.75);

6

4.3.2 getProbability(const std::vector<size_t>& parentStates, size_t nodeState)
const

Get probability for given parent and node state indices.
Parameters:

• parentStates: Vector of parent state indices

• nodeState: Index of node state

Returns: Probability value
Throws: std::runtime_error if indices are invalid

4.3.3 normalize()

Normalize probabilities for each parent configuration. Ensures each conditional distribution
sums to 1.0.

Parameters: None
Returns: void
Example:

1 cpt.setProbability ({0}, 0, 0.6);
2 cpt.setProbability ({0}, 1, 0.4);
3 cpt.normalize (); // Ensures sum = 1.0

4.3.4 isValid(double tolerance = 1e-6) const

Validate that all conditional distributions sum to 1.0.
Parameters:

• tolerance: Tolerance for floating point comparison (default: 1e-6)

Returns: true if valid, false otherwise

4.3.5 getDimensions() const

Get dimensions of the CPT.
Parameters: None
Returns: Vector of dimensions

4.3.6 getTotalSize() const

Get total number of probability entries.
Parameters: None
Returns: Total size

5 BayesianNetwork Class

5.1 Overview

The BayesianNetwork class is the main interface for working with Bayesian networks. It provides
network construction, inference, and I/O capabilities.

7

5.2 Constructors

5.2.1 BayesianNetwork()

Default constructor. Creates an empty network.
Parameters: None
Returns: BayesianNetwork instance

5.3 Network Construction Methods

5.3.1 addNode(const std::string& nodeId, const std::string& nodeName, const
std::vector<std::string>& states)

Add a node to the network.
Parameters:

• nodeId: Unique identifier for the node

• nodeName: Name of the node

• states: Vector of possible state names

Returns: void
Throws: std::runtime_error if node ID already exists
Example:

1 network.addNode("Disease", "Disease", {"None", "Cold", "Flu"});

5.3.2 addEdge(const std::string& parentId, const std::string& childId)

Add an edge from parent to child.
Parameters:

• parentId: ID of parent node

• childId: ID of child node

Returns: void
Throws: std::runtime_error if:

• Parent or child node does not exist

• Adding edge would create a cycle

• Attempting to add self-loop

Example:

1 network.addEdge("Disease", "Symptom");

5.3.3 setCPT(const std::string& nodeId, const ConditionalProbabilityTable& cpt)

Set conditional probability table for a node.
Parameters:

• nodeId: ID of the node

• cpt: Conditional probability table

Returns: void
Throws: std::runtime_error if node does not exist

8

5.4 Inference Methods

5.4.1 getConditionalProbability(const std::string& nodeId, const std::string& nodeState,
const std::map<std::string, std::string>& parentStates) const

Get conditional probability.
Parameters:

• nodeId: ID of the node

• nodeState: State of the node

• parentStates: Map of parent IDs to their states

Returns: Conditional probability P(nodeState | parentStates)
Throws: std::runtime_error if:

• Node does not exist

• CPT not set for node

• Missing or invalid parent states

• Invalid node state

5.4.2 computeJointProbability(const std::map<std::string, std::string>& assign-
ment) const

Compute joint probability for a full assignment.
Parameters:

• assignment: Map of node IDs to their states

Returns: Joint probability P(assignment)
Throws: std::runtime_error if assignment is incomplete
Example:

1 std::map <std::string , std::string > assignment;
2 assignment["Disease"] = "Flu";
3 assignment["Symptom"] = "Yes";
4 double prob = network.computeJointProbability(assignment);

5.4.3 variableElimination(const std::vector<std::string>& queryNodes, const std::map<std::string,
std::string>& evidence) const

Variable elimination for exact inference.
Parameters:

• queryNodes: Vector of node IDs to query

• evidence: Map of observed node IDs to their states

Returns: Map from query assignments to their probabilities (normalized)
Example:

1 std::map <std::string , std::string > evidence;
2 evidence["Symptom"] = "Yes";
3 std::vector <std::string > query = {"Disease"};
4 auto results = network.variableElimination(query , evidence);

9

5.5 Utility Methods

5.5.1 getNode(const std::string& nodeId) const

Get node by ID.
Parameters:

• nodeId: ID of the node

Returns: Const reference to the node
Throws: std::runtime_error if node does not exist

5.5.2 getNodeIds() const

Get all node IDs.
Parameters: None
Returns: Vector of node IDs

5.5.3 generateAssignments(const std::vector<std::string>& nodeIds, std::vector<std::map<std::string,
std::string>& assignments) const

Generate all possible assignments for given nodes.
Parameters:

• nodeIds: Vector of node IDs

• assignments: Output vector of assignments

Returns: void
Throws: std::runtime_error if any node does not exist

5.6 File I/O Methods

5.6.1 saveToFile(const std::string& filename) const

Save network to file.
Parameters:

• filename: Output filename

Returns: void
Throws: std::runtime_error if file cannot be opened

5.6.2 loadFromFile(const std::string& filename)

Load network from file.
Parameters:

• filename: Input filename

Returns: void
Throws: std::runtime_error if file cannot be loaded

10

6 Error Handling

All methods that can fail throw std::runtime_error exceptions with descriptive error messages.
Common error conditions include:

• Node does not exist

• Invalid state names

• Cycle detection (invalid DAG)

• Invalid probability values

• Missing CPTs

• File I/O errors

7 Usage Examples

7.1 Complete Example

1 #include "bayesian_network.hpp"
2 #include <iostream >
3

4 int main() {
5 BayesianNetwork network;
6

7 // Add nodes
8 network.addNode("Disease", "Disease", {"None", "Cold", "Flu"});
9 network.addNode("Symptom", "Fever", {"No", "Yes"});

10

11 // Add edge
12 network.addEdge("Disease", "Symptom");
13

14 // Create CPT
15 std::vector <size_t > dims = {3, 2};
16 ConditionalProbabilityTable cpt(dims);
17 cpt.setProbability ({0}, 0, 0.9); // P(No|None)
18 cpt.setProbability ({0}, 1, 0.1); // P(Yes|None)
19 cpt.setProbability ({1}, 0, 0.7); // P(No|Cold)
20 cpt.setProbability ({1}, 1, 0.3); // P(Yes|Cold)
21 cpt.setProbability ({2}, 0, 0.2); // P(No|Flu)
22 cpt.setProbability ({2}, 1, 0.8); // P(Yes|Flu)
23 cpt.normalize ();
24 network.setCPT("Symptom", cpt);
25

26 // Prior for Disease
27 std::vector <size_t > diseaseDims = {3};
28 ConditionalProbabilityTable diseaseCPT(diseaseDims);
29 diseaseCPT.setProbability ({}, 0, 0.7);
30 diseaseCPT.setProbability ({}, 1, 0.2);
31 diseaseCPT.setProbability ({}, 2, 0.1);
32 diseaseCPT.normalize ();
33 network.setCPT("Disease", diseaseCPT);
34

35 // Inference
36 std::map <std::string , std::string > evidence;
37 evidence["Symptom"] = "Yes";

11

38 std::vector <std::string > query = {"Disease"};
39 auto results = network.variableElimination(query , evidence);
40

41 // Display results
42 for (const auto& pair : results) {
43 std::cout << "P(Disease=" << pair.first.at("Disease")
44 << ")␣=␣" << pair.second << std::endl;
45 }
46

47 return 0;
48 }

8 Performance Notes

• Variable elimination has exponential time complexity in the worst case

• CPT storage is exponential in the number of parents

• Topological ordering minimizes computation during inference

• State lookup is O(1) via hash maps

9 Copyright

Copyright (C) 2025, Shyamal Chandra

12

	Introduction
	Header Files
	node.hpp
	cpt.hpp
	bayesian_network.hpp

	Node Class
	Overview
	Public Members
	Constructors
	Node()
	Node(const std::string& nodeName, const std::vector<std::string>& nodeStates)

	Methods
	getStateIndex(const std::string& stateName) const
	hasState(const std::string& stateName) const
	getNumStates() const
	addParent(const std::string& parentId)
	removeParent(const std::string& parentId)
	hasParent(const std::string& parentId) const
	getNumParents() const

	ConditionalProbabilityTable Class
	Overview
	Constructors
	ConditionalProbabilityTable()
	ConditionalProbabilityTable(const std::vector<size_t>& dims)

	Methods
	setProbability(const std::vector<size_t>& parentStates, size_t nodeState, double prob)
	getProbability(const std::vector<size_t>& parentStates, size_t nodeState) const
	normalize()
	isValid(double tolerance = 1e-6) const
	getDimensions() const
	getTotalSize() const

	BayesianNetwork Class
	Overview
	Constructors
	BayesianNetwork()

	Network Construction Methods
	addNode(const std::string& nodeId, const std::string& nodeName, const std::vector<std::string>& states)
	addEdge(const std::string& parentId, const std::string& childId)
	setCPT(const std::string& nodeId, const ConditionalProbabilityTable& cpt)

	Inference Methods
	getConditionalProbability(const std::string& nodeId, const std::string& nodeState, const std::map<std::string, std::string>& parentStates) const
	computeJointProbability(const std::map<std::string, std::string>& assignment) const
	variableElimination(const std::vector<std::string>& queryNodes, const std::map<std::string, std::string>& evidence) const

	Utility Methods
	getNode(const std::string& nodeId) const
	getNodeIds() const
	generateAssignments(const std::vector<std::string>& nodeIds, std::vector<std::map<std::string, std::string>& assignments) const

	File I/O Methods
	saveToFile(const std::string& filename) const
	loadFromFile(const std::string& filename)

	Error Handling
	Usage Examples
	Complete Example

	Performance Notes
	Copyright

