Lossless Bayesian Network Implementation

Shyamal Chandra

2025

Abstract

This document describes the implementation of a lossless Bayesian network in C++. The
implementation provides exact inference capabilities using variable elimination, maintaining
all probability information without approximation. The system supports directed acyclic
graphs (DAGs) with conditional probability tables (CPTs) and provides a complete API for
network construction, inference, and serialization.

Contents

(1__Introductionl
1.1 Key Features|

2 Architecture

2.1 Core Components|. e

[2.1.2 ConditionalProbabilityTable Class|
[2.1.3 BayesianNetwork Class|[.

B Mail rcal Foundation

4.1.1 Multi-dimensional Array Indexing|
[4.1.2 Topological Sorting|. o
4.2 Interence Algorithm|

[6 Usage Examples|

[5.2 Performing Inference|o

6 File Format]

7 Peorf Consid ond

[8 Error Handling]

[9__Conclusionl

(10 References|

NN

IS NN w w w W W NN NN

= s

1 Introduction

Bayesian networks are probabilistic graphical models that represent a set of variables and their
conditional dependencies via a directed acyclic graph (DAG). This implementation provides a
lossless representation, meaning that all probability computations are performed exactly without
approximation, preserving the full precision of the probability distributions.

1.1 Key Features

e Lossless Representation: All probabilities stored and computed exactly

Exact Inference: Variable elimination algorithm for precise inference

DAG Validation: Automatic cycle detection and topological sorting

Flexible Structure: Support for arbitrary DAG structures

e CPT Management: Efficient storage and access of conditional probability tables

File I/0: Network serialization and loading capabilities

2 Architecture

2.1 Core Components

The implementation consists of three main components:

2.1.1 Node Class

The Node class represents a variable in the Bayesian network. Each node has:
e A unique identifier and name
e A set of possible states
e Parent relationships (for DAG structure)

e Fast state lookup via index mapping

2.1.2 ConditionalProbabilityTable Class

The ConditionalProbabilityTable class stores conditional probabilities in a multi-dimensional
array format. Key features:

e Efficient multi-dimensional indexing using stride calculations
e Automatic normalization of conditional distributions
e Validation of probability distributions

e Lossless storage of all probability values

2.1.3 BayesianNetwork Class

The BayesianNetwork class is the main interface for working with Bayesian networks. It pro-
vides:

e Network construction (adding nodes and edges)
e DAG validation and topological sorting

e Exact inference using variable elimination

Joint probability computation

File I/O operations

3 Mathematical Foundation

3.1 Bayesian Network Definition

A Bayesian network is a pair (G, P) where:

e G = (V,E) is a directed acyclic graph with vertices V' (variables) and edges E (dependen-
cies)

e P is a set of conditional probability distributions, one for each variable given its parents

The joint probability distribution factorizes as:

P(Xy, Xa, ..., X,) = | [P(Xi|Pa(X;))
=1

where Pa(X;) denotes the parents of X; in the graph.

3.2 Inference

Given evidence F = e, we compute the posterior probability:

P(QvE:e) _ ZHP(QaE:evH)
P(EZB) ZQ,H‘P(QaE:eaH)

where @ is the query variable, and H are hidden variables.

PQIE =e) =

3.3 Variable Elimination

Variable elimination is an exact inference algorithm that:
1. Eliminates variables one at a time by summing them out
2. Maintains factors (functions over subsets of variables)

3. Computes the exact posterior distribution

4 Implementation Details

4.1 Data Structures

4.1.1 Multi-dimensional Array Indexing

The CPT uses a flat array with stride-based indexing. For dimensions [dy,dy, . ..

stride for dimension 7 is:

n—1
stride,- = H dj

j=it1
The flat index for multi-dimensional indices [ig, 1, ..., ip—1] is:
n—1
index = Z 11 - stridey,
k=0

4.1.2 Topological Sorting

The network uses Kahn’s algorithm for topological sorting:

1. Compute in-degrees for all nodes
2. Initialize queue with nodes having in-degree 0

3. Repeatedly remove nodes from queue and update in-degrees

4. Detect cycles if queue becomes empty before all nodes are processed

4.2 Inference Algorithm

The variable elimination algorithm:

1. Generate all possible assignments for query variables
2. For each query assignment, sum over all hidden variables

3. Normalize the resulting distribution

5 Usage Examples

5.1 Basic Network Construction
BayesianNetwork network;

// Add nodes

network .addNode("Disease", "Disease", {"None", "Cold", "Flu"});

network .addNode ("Symptom" , "Fever", {"No", "Yes"});

// Add edge
network .addEdge (" Disease", "Symptom");

// Create and set CPT
std :: vector<size t> dims = {3, 2};
ConditionalProbabilityTable cpt(dims);

cpt.setProbability ({0}, 0, 0.9); // P(Fever=No | Disease=None)
cpt.setProbability ({0}, 1, 0.1); // P(Fever=Yes | Disease=None

// ... set other probabilities
cpt.normalize ();
network .setCPT ("Symptom" , cpt);

) dn—1]> the

0.9
= 0.1

5.2 Performing Inference

// Set evidence
std : :map<std :: string , std::string> evidence;

evidence ["Symptom"] = "Yes";

// Query

std:: vector<std ::string> queryNodes = {"Disease" };

auto results = network.variableElimination (queryNodes, evidence);

// Display results
for (const auto& pair : results) {
std :: cout << "P(Disease=" << pair.first.at("Discase")
<< ")_=_" << pair.second << std::endl;

6 File Format

The network can be saved to and loaded from files. The format includes:
e Node definitions (ID, name, states)
e Edge definitions (parent -> child)

e CPT data (dimensions and probabilities)

7 Performance Considerations

e Time Complexity: Variable elimination is exponential in the number of variables in the
worst case

e Space Complexity: CPT storage is exponential in the number of parents

e Optimization: Topological ordering minimizes computation during inference

8 Error Handling

The implementation includes comprehensive error handling:
e Cycle detection when adding edges
e Validation of probability values (must be in [0, 1])
e Normalization checks for CPTs

e Missing node/state validation

9 Conclusion

This implementation provides a complete, lossless Bayesian network system with exact inference
capabilities. The design emphasizes correctness and precision, making it suitable for applications
requiring exact probabilistic reasoning.

10 References
e Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann.
e Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models. MIT Press.

e Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach. Pearson.

	Introduction
	Key Features

	Architecture
	Core Components
	Node Class
	ConditionalProbabilityTable Class
	BayesianNetwork Class

	Mathematical Foundation
	Bayesian Network Definition
	Inference
	Variable Elimination

	Implementation Details
	Data Structures
	Multi-dimensional Array Indexing
	Topological Sorting

	Inference Algorithm

	Usage Examples
	Basic Network Construction
	Performing Inference

	File Format
	Performance Considerations
	Error Handling
	Conclusion
	References

