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Abstract

This document describes the implementation of a lossless Bayesian network in C++. The
implementation provides exact inference capabilities using variable elimination, maintaining
all probability information without approximation. The system supports directed acyclic
graphs (DAGs) with conditional probability tables (CPTs) and provides a complete API for
network construction, inference, and serialization.
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1 Introduction

Bayesian networks are probabilistic graphical models that represent a set of variables and their
conditional dependencies via a directed acyclic graph (DAG). This implementation provides a
lossless representation, meaning that all probability computations are performed exactly without
approximation, preserving the full precision of the probability distributions.

1.1 Key Features

• Lossless Representation: All probabilities stored and computed exactly

• Exact Inference: Variable elimination algorithm for precise inference

• DAG Validation: Automatic cycle detection and topological sorting

• Flexible Structure: Support for arbitrary DAG structures

• CPT Management: Efficient storage and access of conditional probability tables

• File I/O: Network serialization and loading capabilities

2 Architecture

2.1 Core Components

The implementation consists of three main components:

2.1.1 Node Class

The Node class represents a variable in the Bayesian network. Each node has:

• A unique identifier and name

• A set of possible states

• Parent relationships (for DAG structure)

• Fast state lookup via index mapping

2.1.2 ConditionalProbabilityTable Class

The ConditionalProbabilityTable class stores conditional probabilities in a multi-dimensional
array format. Key features:

• Efficient multi-dimensional indexing using stride calculations

• Automatic normalization of conditional distributions

• Validation of probability distributions

• Lossless storage of all probability values
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2.1.3 BayesianNetwork Class

The BayesianNetwork class is the main interface for working with Bayesian networks. It pro-
vides:

• Network construction (adding nodes and edges)

• DAG validation and topological sorting

• Exact inference using variable elimination

• Joint probability computation

• File I/O operations

3 Mathematical Foundation

3.1 Bayesian Network Definition

A Bayesian network is a pair (G,P ) where:

• G = (V,E) is a directed acyclic graph with vertices V (variables) and edges E (dependen-
cies)

• P is a set of conditional probability distributions, one for each variable given its parents

The joint probability distribution factorizes as:

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi|Pa(Xi))

where Pa(Xi) denotes the parents of Xi in the graph.

3.2 Inference

Given evidence E = e, we compute the posterior probability:

P (Q|E = e) =
P (Q,E = e)

P (E = e)
=

∑
H P (Q,E = e,H)∑

Q,H P (Q,E = e,H)

where Q is the query variable, and H are hidden variables.

3.3 Variable Elimination

Variable elimination is an exact inference algorithm that:

1. Eliminates variables one at a time by summing them out

2. Maintains factors (functions over subsets of variables)

3. Computes the exact posterior distribution
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4 Implementation Details

4.1 Data Structures

4.1.1 Multi-dimensional Array Indexing

The CPT uses a flat array with stride-based indexing. For dimensions [d0, d1, . . . , dn−1], the
stride for dimension i is:

stridei =
n−1∏

j=i+1

dj

The flat index for multi-dimensional indices [i0, i1, . . . , in−1] is:

index =

n−1∑
k=0

ik · stridek

4.1.2 Topological Sorting

The network uses Kahn’s algorithm for topological sorting:

1. Compute in-degrees for all nodes

2. Initialize queue with nodes having in-degree 0

3. Repeatedly remove nodes from queue and update in-degrees

4. Detect cycles if queue becomes empty before all nodes are processed

4.2 Inference Algorithm

The variable elimination algorithm:

1. Generate all possible assignments for query variables

2. For each query assignment, sum over all hidden variables

3. Normalize the resulting distribution

5 Usage Examples

5.1 Basic Network Construction

BayesianNetwork network ;

// Add nodes
network . addNode ( "Disease " , "Disease " , {"None" , "Cold" , "Flu" } ) ;
network . addNode ( "Symptom" , "Fever" , {"No" , "Yes" } ) ;

// Add edge
network . addEdge ( "Disease " , "Symptom" ) ;

// Create and s e t CPT
std : : vector<size_t> dims = {3 , 2} ;
Cond i t i ona lProbab i l i tyTab l e cpt ( dims ) ;
cpt . s e tP r obab i l i t y ({0} , 0 , 0 . 9 ) ; // P( Fever=No | Disease=None) = 0.9
cpt . s e tP r obab i l i t y ({0} , 1 , 0 . 1 ) ; // P( Fever=Yes | Disease=None) = 0.1
// . . . s e t o ther p r o b a b i l i t i e s
cpt . normal ize ( ) ;
network . setCPT( "Symptom" , cpt ) ;
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5.2 Performing Inference

// Set ev idence
std : : map<std : : s t r i ng , std : : s t r i ng> ev idence ;
ev idence [ "Symptom" ] = "Yes" ;

// Query
std : : vector<std : : s t r i ng> queryNodes = {"Disease " } ;
auto r e s u l t s = network . va r i ab l eE l im ina t i on ( queryNodes , ev idence ) ;

// Disp lay r e s u l t s
for ( const auto& pa i r : r e s u l t s ) {

std : : cout << "P( Disease=" << pa i r . f i r s t . at ( "Disease " )
<< " ) ␣=␣" << pa i r . second << std : : endl ;

}

6 File Format

The network can be saved to and loaded from files. The format includes:

• Node definitions (ID, name, states)

• Edge definitions (parent -> child)

• CPT data (dimensions and probabilities)

7 Performance Considerations

• Time Complexity: Variable elimination is exponential in the number of variables in the
worst case

• Space Complexity: CPT storage is exponential in the number of parents

• Optimization: Topological ordering minimizes computation during inference

8 Error Handling

The implementation includes comprehensive error handling:

• Cycle detection when adding edges

• Validation of probability values (must be in [0, 1])

• Normalization checks for CPTs

• Missing node/state validation

9 Conclusion

This implementation provides a complete, lossless Bayesian network system with exact inference
capabilities. The design emphasizes correctness and precision, making it suitable for applications
requiring exact probabilistic reasoning.
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