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1 Introduction

This manual provides comprehensive documentation for the DDRKAM (Data-Driven Runge-Kutta and
Adams Methods) framework. The framework implements numerical methods for solving ordinary differ-
ential equations (ODEs) with support for traditional and hierarchical data-driven approaches.

The framework includes:

• Euler’s Method (1st order)

• Data-Driven Euler’s Method (DDEuler)

• Runge-Kutta 3rd Order Method (RK3)

• Data-Driven Runge-Kutta 3rd Order (DDRK3)

• Adams Methods (AM)

• Data-Driven Adams Methods (DDAM)

2 Euler’s Method

2.1 Overview

Euler’s Method is the simplest numerical method for solving ODEs. It is a first-order explicit method with
local truncation error O(h2).

2.2 Algorithm

yn+1 = yn + h · f(tn, yn) (1)

where h is the step size, f is the ODE function, and yn is the state at time tn.

2.3 API Reference

2.3.1 euler step

Performs a single integration step using Euler’s method.

1 double euler_step(ODEFunction f, double t0 , double* y0 ,

2 size_t n, double h, void* params);

Parameters:

• f: Function pointer to the ODE system

• t0: Current time

• y0: Current state vector (modified in-place)

• n: Dimension of the system

• h: Step size

• params: User-defined parameters

Returns: New time value (t0 + h)
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2.3.2 euler solve

Solves an ODE system over a time interval using Euler’s method.

1 size_t euler_solve(ODEFunction f, double t0 , double t_end ,

2 const double* y0 , size_t n, double h,

3 void* params , double* t_out , double* y_out);

3 Data-Driven Euler’s Method

3.1 Overview

Data-Driven Euler’s Method (DDEuler) extends standard Euler’s method with a hierarchical transformer-
inspired architecture that applies adaptive corrections to improve accuracy.

3.2 Algorithm

yn+1 = yn + h · f(tn, yn) + h · α · Attention(yn) (2)

where α is a learning rate and Attention(yn) is computed through hierarchical transformer layers.

3.3 API Reference

3.3.1 hierarchical euler init

Initializes a Data-Driven Euler solver.

1 int hierarchical_euler_init(HierarchicalEulerSolver* solver ,

2 size_t num_layers , size_t state_dim ,

3 size_t hidden_dim);

3.3.2 hierarchical euler step

Performs a single integration step using Data-Driven Euler.

1 double hierarchical_euler_step(HierarchicalEulerSolver* solver ,

2 ODEFunction f, double t, double* y,

3 double h, void* params);

3.3.3 hierarchical euler solve

Solves an ODE system using Data-Driven Euler over a time interval.

1 size_t hierarchical_euler_solve(HierarchicalEulerSolver* solver ,

2 ODEFunction f, double t0 , double t_end ,

3 const double* y0 , double h, void* params ,

4 double* t_out , double* y_out);
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4 Parallel and Distributed Methods

4.1 Overview

All methods support parallel, distributed, concurrent, hierarchical, and stacked execution modes. This
enables:

• Multi-threaded execution (OpenMP, pthreads)

• Distributed computing (MPI)

• Concurrent execution of multiple methods

• Hierarchical/stacked architectures

• Enhanced performance and scalability

4.2 Parallel Runge-Kutta

4.2.1 parallel rk init

Initialize parallel RK3 solver.

1 int parallel_rk_init(ParallelRKSolver* solver , size_t state_dim ,

2 size_t num_workers , ParallelMode mode ,

3 StackedConfig* stacked);

4.2.2 parallel rk step

Perform parallel RK3 step.

1 double parallel_rk_step(ParallelRKSolver* solver , ODEFunction f,

2 double t, double* y, double h, void* params);

4.2.3 stacked rk step

Perform stacked/hierarchical RK3 step.

1 double stacked_rk_step(ParallelRKSolver* solver , ODEFunction f,

2 double t, double* y, double h, void* params);

4.2.4 concurrent rk execute

Execute multiple RK3 instances concurrently.

1 int concurrent_rk_execute(ParallelRKSolver* solvers[], size_t num_solvers ,

2 ODEFunction f, double t, const double* y, double h,

3 void* params , double ** results);

5 Bayesian ODE Solvers with Dynamic Programming

5.1 Forward-Backward Solver

Probabilistic solver computing full posterior distribution.
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5.1.1 forward backward init

Initialize forward-backward solver with state space discretization and transition matrix.

5.1.2 forward backward step

Update forward probabilities with new observation. Complexity: O(S2) where S is fixed state space size.

5.1.3 forward backward get statistics

Get mean, variance, and full posterior distribution.

5.2 Viterbi Solver

Exact (MAP) solver finding most likely solution path.

5.2.1 viterbi init

Initialize Viterbi solver.

5.2.2 viterbi step

Update Viterbi table with new observation.

5.2.3 viterbi get map

Get MAP estimate and path probability.

5.3 Randomized Dynamic Programming

Adaptive control via Monte Carlo value estimation.

5.3.1 randomized dp init

Initialize randomized DP solver with sampling parameters.

5.3.2 randomized dp step

O(1) step: estimate value and choose optimal control.

5.3.3 randomized dp solve

Solve ODE using randomized DP with backward induction.

6 O(1) Approximation Solvers

Constant-time approximation methods for hard real-time constraints.

6.1 Lookup Table Solver

Pre-computed solutions with O(1) lookup and bilinear interpolation.
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6.1.1 lookup table init

Initialize lookup table solver with grid dimensions.

6.1.2 lookup table precompute

Pre-compute solution grid offline (can use any method).

6.1.3 lookup table solve

O(1) lookup with bilinear interpolation.

6.2 Neural Network Approximator

Neural network for O(1) solution approximation.

6.2.1 neural approximator init

Initialize neural network with layer sizes.

6.2.2 neural approximator solve

O(1) forward pass to approximate solution.

6.3 Chebyshev Polynomial Approximator

Polynomial approximation with O(k) ≈ O(1) evaluation.

6.3.1 chebyshev approximator init

Initialize Chebyshev approximator.

6.3.2 chebyshev approximator solve

O(1) Chebyshev evaluation using Clenshaw’s algorithm.

7 Causal and Granger Causality Solvers

7.1 Causal RK4 Solver

Strictly causal RK4 using only past information.

7.1.1 causal rk4 init

Initialize causal RK4 solver.

7.1.2 causal rk4 step

O(1) causal RK4 step.

7.2 Causal Adams Solver

Multi-step Adams method with causal constraints.
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7.2.1 causal adams init

Initialize causal Adams solver.

7.2.2 causal adams step

O(1) causal Adams step.

7.3 Granger Causality Solver

Analyzes causal relationships and adapts solving strategy.

7.3.1 granger causality init

Initialize Granger causality solver.

7.3.2 granger causality step

O(1) step with adaptive solving based on causality.

7.3.3 granger causality get matrix

Get Granger causality matrix.

8 Quantum ODE Solver

Quantum-inspired nonlinear ODE solver for post-real-time future prediction.

8.1 quantum ode init

Initialize quantum ODE solver.

8.2 quantum ode step

Quantum-inspired optimization step.

8.3 quantum ode predict future

Predict future states using quantum superposition.

8.4 quantum ode refine

Post-real-time refinement for improved accuracy.

9 Reverse Belief Propagation with Lossless Tracing

Backwards uncertainty propagation with lossless state tracing.

9.1 reverse belief init

Initialize reverse belief propagation solver with lossless tracing.
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9.2 reverse belief forward solve

Solve forward and build lossless trace (stores exact states, derivatives, Jacobians).

9.3 reverse belief reverse solve

Propagate beliefs backwards using lossless trace.

9.4 reverse belief smooth

Combine forward and reverse passes for optimal smoothed estimates.

9.5 belief propagate forward

Propagate belief forward: P (t+∆t) = J · P (t) · JT .

9.6 belief propagate backward

Propagate belief backward: P (t) = J−1 · P (t+∆t) · (J−1)T .

10 Real-Time, Online, and Dynamic Methods

10.1 Real-Time Methods

Real-time methods process streaming data with minimal latency.

10.1.1 realtime rk init

Initialize real-time RK3 solver.

1 int realtime_rk_init(RealtimeRKSolver* solver , size_t state_dim ,

2 double step_size , DataCallback callback ,

3 void* callback_data);

10.1.2 realtime rk step

Perform real-time RK3 step with streaming support.

1 double realtime_rk_step(RealtimeRKSolver* solver , ODEFunction f,

2 double t, double* y, double h, void* params);

10.2 Online Methods

Online methods adapt to incoming data with incremental learning.

10.2.1 online rk init

Initialize online RK3 solver.

1 int online_rk_init(OnlineRKSolver* solver , size_t state_dim ,

2 double initial_step_size , double learning_rate);
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10.2.2 online rk step

Perform online RK3 step with adaptive step size.

1 double online_rk_step(OnlineRKSolver* solver , ODEFunction f,

2 double t, double* y, void* params);

10.3 Dynamic Methods

Dynamic methods provide fully adaptive execution.

10.3.1 dynamic rk init

Initialize dynamic RK3 solver.

1 int dynamic_rk_init(DynamicRKSolver* solver , size_t state_dim ,

2 double initial_step_size , double adaptation_rate);

10.3.2 dynamic rk step

Perform dynamic RK3 step with adaptive parameters.

1 double dynamic_rk_step(DynamicRKSolver* solver , ODEFunction f,

2 double t, double* y, void* params);

11 Nonlinear Programming Solvers

11.1 Karmarkar’s Algorithm

Karmarkar’s Algorithm is a polynomial-time interior point method for linear programming. It provides
guaranteed polynomial-time convergence for linear programming problems.

11.1.1 karmarkar solver init

Initialize Karmarkar solver.

1 int karmarkar_solver_init(KarmarkarSolver* solver , size_t state_dim ,

2 ADAMSolverType type , double alpha , double beta ,

3 double mu , double epsilon , const double* c,

4 const double ** A, const double* b,

5 size_t num_constraints);

11.1.2 karmarkar ode solve

Solve ODE using Karmarkar’s algorithm.

1 int karmarkar_ode_solve(KarmarkarSolver* solver , ODEFunction f,

2 double t0 , double t_end , const double* y0 ,

3 void* params , double* y_out);
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11.2 Nonlinear ODE Solver

11.2.1 nonlinear ode init

Initialize nonlinear ODE solver using NLP methods.

1 int nonlinear_ode_init(NonlinearODESolver* solver , size_t state_dim ,

2 NLPSolverType solver_type , ObjectiveFunction objective ,

3 ConstraintFunction constraints , void* params);

11.2.2 nonlinear ode solve

Solve ODE using nonlinear programming.

1 int nonlinear_ode_solve(NonlinearODESolver* solver , ODEFunction f,

2 double t0 , double t_end , const double* y0 ,

3 double* y_out);

11.3 Nonlinear PDE Solver

11.3.1 nonlinear pde init

Initialize nonlinear PDE solver.

1 int nonlinear_pde_init(NonlinearPDESolver* solver , size_t spatial_dim ,

2 const size_t* grid_size , NLPSolverType solver_type ,

3 PDEFunction pde_func , void* params);

11.3.2 nonlinear pde solve

Solve PDE using nonlinear programming.

1 int nonlinear_pde_solve(NonlinearPDESolver* solver , double t0 , double t_end ,

2 const double* u0 , double* u_out);

12 Additional Distributed, Data-Driven, Online, Real-Time Solvers

12.1 Distributed Data-Driven Solver

Combines distributed computing with data-driven methods.

12.2 Online Data-Driven Solver

Combines online learning with data-driven methods.

12.3 Real-Time Data-Driven Solver

Combines real-time processing with data-driven methods.

12.4 Distributed Online Solver

Combines distributed computing with online learning.
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12.5 Distributed Real-Time Solver

Combines distributed computing with real-time processing.

13 Runge-Kutta 3rd Order Method

13.1 Overview

The Runge-Kutta 3rd order method provides a good balance between accuracy and computational efficiency
for solving ODEs.

13.2 API Reference

13.2.1 rk3 step

Performs a single integration step using RK3.

1 double rk3_step(ODEFunction f, double t0 , double* y0 ,

2 size_t n, double h, void* params);

Parameters:

• f: Function pointer to the ODE system

• t0: Current time

• y0: Current state vector (modified in-place)

• n: Dimension of the system

• h: Step size

• params: User-defined parameters

Returns: New time value (t0 + h)

13.2.2 rk3 solve

Solves an ODE system over a time interval.

1 size_t rk3_solve(ODEFunction f, double t0 , double t_end ,

2 const double* y0 , size_t n, double h,

3 void* params , double* t_out , double* y_out);

Parameters:

• f: Function pointer to the ODE system

• t0: Initial time

• t end: Final time

• y0: Initial state vector

• n: Dimension of the system

• h: Step size
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• params: User-defined parameters

• t out: Output time array (allocated by caller)

• y out: Output state array (n × num steps, allocated by caller)

Returns: Number of steps taken

13.3 Example

1 void lorenz(double t, const double* y, double* dydt , void* params) {

2 double* p = (double *) params;

3 double sigma = p[0], rho = p[1], beta = p[2];

4 dydt [0] = sigma * (y[1] - y[0]);

5 dydt [1] = y[0] * (rho - y[2]) - y[1];

6 dydt [2] = y[0] * y[1] - beta * y[2];

7 }

8

9 double params [3] = {10.0 , 28.0, 8.0/3.0};

10 double y0[3] = {1.0, 1.0, 1.0};

11 double t_out [100];

12 double y_out [300];

13 size_t steps = rk3_solve(lorenz , 0.0, 1.0, y0 , 3, 0.01,

14 params , t_out , y_out);

14 Adams Methods

14.1 Adams-Bashforth 3rd Order

Predictor step for multi-step integration.

1 void adams_bashforth3(ODEFunction f, const double* t,

2 const double* y, size_t n, double h,

3 void* params , double* y_pred);

14.2 Adams-Moulton 3rd Order

Corrector step for multi-step integration.

1 void adams_moulton3(ODEFunction f, const double* t,

2 const double* y, size_t n, double h,

3 void* params , const double* y_pred ,

4 double* y_corr);

15 Hierarchical Runge-Kutta Method

15.1 Overview

The hierarchical RK method uses a transformer-like architecture with multiple processing layers and at-
tention mechanisms.
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15.2 API Reference

15.2.1 hierarchical rk init

Initializes a hierarchical RK solver.

1 int hierarchical_rk_init(HierarchicalRKSolver* solver ,

2 size_t num_layers , size_t state_dim ,

3 size_t hidden_dim);

Returns: 0 on success, -1 on failure

15.2.2 hierarchical rk free

Frees resources allocated by the solver.

1 void hierarchical_rk_free(HierarchicalRKSolver* solver);

15.2.3 hierarchical rk solve

Solves an ODE using the hierarchical method.

1 size_t hierarchical_rk_solve(HierarchicalRKSolver* solver ,

2 ODEFunction f, double t0 , double t_end ,

3 const double* y0 , double h, void* params ,

4 double* t_out , double* y_out);

16 Objective-C Framework

16.1 DDRKAMSolver

Main solver class for Objective-C applications.

1 DDRKAMSolver* solver = [[ DDRKAMSolver alloc]

2 initWithDimension :3];

3 NSDictionary* result = [solver solveWithFunction :^( double t,

4 const double* y,

5 double* dydt ,

6 void* params) {

7 // ODE definition

8 } startTime :0.0 endTime :1.0

9 initialState:@[@1.0, @1.0, @1.0]

10 stepSize :0.01 params:NULL];

16.2 DDRKAMVisualizer

Visualization component for plotting solutions.

1 DDRKAMVisualizer* viz = [[ DDRKAMVisualizer alloc] init];

2 NSView* view = [viz createVisualizationViewWithTime:timeArray

3 state:stateArray

4 dimension :3];

5 [viz exportToCSV:@"/path/to/output.csv"

6 time:timeArray

7 state:stateArray ];
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16.3 DDRKAMHierarchicalSolver

Hierarchical solver for Objective-C.

1 DDRKAMHierarchicalSolver* solver =

2 [[ DDRKAMHierarchicalSolver alloc]

3 initWithDimension :3 numLayers :4 hiddenDim :32];

17 Map/Reduce Framework

17.1 Overview

The Map/Reduce framework provides distributed ODE solving on commodity hardware with fault tol-
erance through redundancy. It partitions the state space across mapper nodes, processes derivatives in
parallel, and aggregates results through reducer nodes.

17.2 API Reference

17.2.1 mapreduce ode init

Initializes a Map/Reduce ODE solver.

1 int mapreduce_ode_init(MapReduceODESolver* solver ,

2 size_t state_dim ,

3 const MapReduceConfig* config);

Parameters:

• solver: Pointer to Map/Reduce solver structure

• state dim: Dimension of the ODE system

• config: Configuration structure with mapper/reducer counts, redundancy settings, etc.

Returns: 0 on success, -1 on failure

17.2.2 mapreduce ode solve

Solves an ODE system using Map/Reduce framework.

1 int mapreduce_ode_solve(MapReduceODESolver* solver ,

2 ODEFunction f,

3 double t0 , double t_end ,

4 const double* y0 ,

5 double h, void* params ,

6 double* y_out);

Parameters:

• solver: Initialized Map/Reduce solver

• f: ODE function pointer

• t0, t end: Time interval

• y0: Initial state
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• h: Step size

• params: User-defined parameters

• y out: Output state

Returns: 0 on success, -1 on failure

17.2.3 mapreduce estimate cost

Estimates the computational cost for Map/Reduce execution.

1 double mapreduce_estimate_cost(const MapReduceODESolver* solver ,

2 double* compute_hours ,

3 double* network_cost);

17.3 Example

1 #include "mapreduce_solvers.h"

2

3 MapReduceODESolver solver;

4 MapReduceConfig config = {

5 .num_mappers = 4,

6 .num_reducers = 2,

7 .chunk_size = 100,

8 .enable_redundancy = 1,

9 .redundancy_factor = 3,

10 .use_commodity_hardware = 1,

11 .network_bandwidth = 100.0,

12 .compute_cost_per_hour = 0.10

13 };

14

15 mapreduce_ode_init (&solver , 1000, &config);

16

17 double y0 [1000] = {1.0, ...};

18 double y_out [1000];

19 mapreduce_ode_solve (&solver , my_ode , 0.0, 1.0, y0 , 0.01, NULL , y_out);

20

21 double cost = mapreduce_estimate_cost (&solver , NULL , NULL);

22 mapreduce_ode_free (& solver);

18 Apache Spark Framework

18.1 Overview

The Apache Spark framework provides distributed ODE solving using Resilient Distributed Datasets
(RDDs) for fault-tolerant computation. Spark offers superior performance for iterative algorithms through
RDD caching and lineage-based recovery.
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18.2 API Reference

18.2.1 spark ode init

Initializes a Spark ODE solver.

1 int spark_ode_init(SparkODESolver* solver ,

2 size_t state_dim ,

3 const SparkConfig* config);

Parameters:

• solver: Pointer to Spark solver structure

• state dim: Dimension of the ODE system

• config: Configuration structure with executor counts, caching settings, etc.

Returns: 0 on success, -1 on failure

18.2.2 spark ode solve

Solves an ODE system using Spark framework.

1 int spark_ode_solve(SparkODESolver* solver ,

2 ODEFunction f,

3 double t0 , double t_end ,

4 const double* y0 ,

5 double h, void* params ,

6 double* y_out);

Parameters:

• solver: Initialized Spark solver

• f: ODE function pointer

• t0, t end: Time interval

• y0: Initial state

• h: Step size

• params: User-defined parameters

• y out: Output state

Returns: 0 on success, -1 on failure

18.2.3 spark estimate cost

Estimates the computational cost for Spark execution.

1 double spark_estimate_cost(const SparkODESolver* solver ,

2 double* compute_hours ,

3 double* network_cost ,

4 double* storage_cost);
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18.3 Example

1 #include "spark_solvers.h"

2

3 SparkODESolver solver;

4 SparkConfig config = {

5 .num_executors = 4,

6 .cores_per_executor = 2,

7 .memory_per_executor = 2048,

8 .num_partitions = 8,

9 .enable_caching = 1,

10 .enable_checkpointing = 1,

11 .checkpoint_interval = 1.0,

12 .use_commodity_hardware = 1,

13 .network_bandwidth = 100.0,

14 .compute_cost_per_hour = 0.10,

15 .enable_dynamic_allocation = 1

16 };

17

18 spark_ode_init (&solver , 1000, &config);

19

20 double y0 [1000] = {1.0, ...};

21 double y_out [1000];

22 spark_ode_solve (&solver , my_ode , 0.0, 1.0, y0 , 0.01, NULL , y_out);

23

24 double cost = spark_estimate_cost (&solver , NULL , NULL , NULL);

25 spark_ode_free (& solver);

19 Non-Orthodox Architectures

19.1 Micro-Gas Jet Circuit

Micro-gas jet circuits use fluid dynamics for computation. See nonorthodox architectures.h for API.

19.2 Dataflow (Arvind)

Tagged token dataflow computing for fine-grained parallelism.

19.3 ACE (Turing)

Turing’s stored-program computer architecture implementation.

19.4 Systolic Array

Regular array of processing elements with local communication.

19.5 TPU (Patterson)

Google TPU architecture for matrix acceleration.
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19.6 GPU Architectures

Support for CUDA, Metal, Vulkan, and AMD GPU acceleration.

19.7 Spiralizer with Chord Algorithm (Chandra, Shyamal)

Spiralizer architecture combining Chord distributed hash tables with Robert Morris collision hashing (MIT)
and spiral traversal patterns.

API:

1 SpiralizerChordConfig config = {

2 .num_nodes = 256,

3 .finger_table_size = 8,

4 .hash_table_size = 1024,

5 .enable_morris_hashing = 1,

6 .enable_spiral_traversal = 1

7 };

8 SpiralizerChordSolver solver;

9 spiralizer_chord_ode_init (&solver , n, &config);

10 spiralizer_chord_ode_solve (&solver , f, t0 , t_end , y0 , h, params , y_out);

11 spiralizer_chord_ode_free (& solver);

19.8 Lattice Architecture (Waterfront variation - Chandra, Shyamal)

Variation of Turing’s Waterfront architecture, presented by USC alum from HP Labs at MIT event online
at Strata. Multi-dimensional lattice with Waterfront buffering.

API:

1 LatticeWaterfrontConfig config = {

2 .lattice_dimensions = 4,

3 .nodes_per_dimension = 16,

4 .waterfront_size = 256,

5 .enable_waterfront_buffering = 1,

6 .enable_lattice_routing = 1

7 };

8 LatticeWaterfrontSolver solver;

9 lattice_waterfront_ode_init (&solver , n, &config);

10 lattice_waterfront_ode_solve (&solver , f, t0 , t_end , y0 , h, params , y_out);

11 lattice_waterfront_ode_free (& solver);

19.9 Standard Parallel Computing Architectures

MPI (Message Passing Interface):

1 MPIConfig config = {

2 .num_processes = 8,

3 .process_rank = 0,

4 .communication_buffer_size = 1024,

5 .enable_collective_ops = 1

6 };

7 MPISolver solver;

8 mpi_ode_init (&solver , n, &config);

9 mpi_ode_solve (&solver , f, t0 , t_end , y0 , h, params , y_out);

10 mpi_ode_free (& solver);
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OpenMP (Open Multi-Processing):

1 OpenMPConfig config = {

2 .num_threads = 8,

3 .chunk_size = 64,

4 .schedule_type = 1, // dynamic

5 .enable_affinity = 1

6 };

7 OpenMPSolver solver;

8 openmp_ode_init (&solver , n, &config);

9 openmp_ode_solve (&solver , f, t0 , t_end , y0 , h, params , y_out);

10 openmp_ode_free (& solver);

Pthreads (POSIX Threads):

1 PthreadsConfig config = {

2 .num_threads = 8,

3 .enable_work_stealing = 1,

4 .enable_barrier_sync = 1

5 };

6 PthreadsSolver solver;

7 pthreads_ode_init (&solver , n, &config);

8 pthreads_ode_solve (&solver , f, t0 , t_end , y0 , h, params , y_out);

9 pthreads_ode_free (& solver);

19.10 Specialized Hardware Architectures

FPGA AWS F1 (Xilinx UltraScale+):

1 FPGAAWSF1Config config = {

2 .num_fpga_devices = 1,

3 .num_logic_cells = 2500000 ,

4 .num_dsp_slices = 6840,

5 .pcie_bandwidth = 16, // GB/s

6 .enable_hls_acceleration = 1

7 };

8 FPGAAWSF1Solver solver;

9 fpga_aws_f1_ode_init (&solver , n, &config);

10 fpga_aws_f1_ode_solve (&solver , f, t0 , t_end , y0 , h, params , y_out);

11 fpga_aws_f1_ode_free (& solver);

TilePU Sunway (SW26010):

1 TilePUSunwayConfig config = {

2 .num_core_groups = 4,

3 .cores_per_group = 64,

4 .num_management_cores = 4,

5 .enable_dma = 1,

6 .enable_register_communication = 1

7 };

8 TilePUSunwaySolver solver;

9 tilepu_sunway_ode_init (&solver , n, &config);

10 tilepu_sunway_ode_solve (&solver , f, t0 , t_end , y0 , h, params , y_out);

11 tilepu_sunway_ode_free (& solver);

Coprocessor Intel Xeon Phi:
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1 CoprocessorXeonPhiConfig config = {

2 .num_cores = 72,

3 .num_threads_per_core = 4,

4 .high_bandwidth_memory = 16, // GB

5 .enable_wide_vector = 1, // 512-bit

6 .enable_mic_architecture = 1

7 };

8 CoprocessorXeonPhiSolver solver;

9 coprocessor_xeon_phi_ode_init (&solver , n, &config);

10 coprocessor_xeon_phi_ode_solve (&solver , f, t0 , t_end , y0 , h, params , y_out);

11 coprocessor_xeon_phi_ode_free (& solver);

19.11 Additional Architectures

See nonorthodox architectures.h for:

• Standard Parallel Computing: MPI (Message Passing Interface), OpenMP (Open Multi-Processing),
Pthreads (POSIX Threads)

• GPGPU (General-Purpose GPU) for platform-agnostic GPU computing

• Vector Processor architecture for SIMD data-parallel operations

• Specialized Hardware: ASIC (Application-Specific Integrated Circuit), FPGA (Field-Programmable
Gate Array), FPGA AWS F1 (Xilinx UltraScale+), DSP (Digital Signal Processor)

• Quantum Processing Units: QPU Azure (Microsoft Quantum), QPU Intel Horse Ridge (cryogenic
quantum control)

• Specialized Processing Units: TilePU Mellanox (Tile-GX72), TilePU Sunway (SW26010), DPU Mi-
crosoft (biological computation), MFPU (Microfluidic Processing Unit), NPU (Neuromorphic Pro-
cessing Unit), LPU Lightmatter (photonic computing)

• AsAP (Asynchronous Array of Simple Processors) - UC Davis architecture

• Coprocessor: Intel Xeon Phi many-core coprocessor with wide vector units

• Massively-Threaded (Korf) - Frontier search with massive threading

• STARR (Chandra et al.) - Semantic memory architecture - https://github.com/shyamalschandra/STARR

• TrueNorth (IBM), Loihi (Intel), BrainChips - Neuromorphic architectures

• Racetrack (Parkin), Phase Change Memory (IBM Research)

• Lyric (MIT), HW Bayesian Networks (Chandra)

• Semantic Lexographic Binary Search (Chandra & Chandra)

• Kernelized SPS Binary Search (Chandra, Shyamal)

• Multiple-Search Representation Tree Algorithm
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19.12 Multiple-Search Representation Tree Algorithm

Uses multiple search strategies (BFS, DFS, A*, Best-First) with tree and graph state representations.
API:

1 MultipleSearchTreeConfig config = {

2 .max_tree_depth = 100,

3 .max_nodes = 10000 ,

4 .num_search_strategies = 4,

5 .enable_bfs = 1,

6 .enable_dfs = 1,

7 .enable_astar = 1,

8 .enable_best_first = 1,

9 .heuristic_weight = 1.0

10 };

11 MultipleSearchTreeSolver solver;

12 multiple_search_tree_ode_init (&solver , n, &config);

13 multiple_search_tree_ode_solve (&solver , f, t0 , t_end , y0 , h, params , y_out);

14 multiple_search_tree_ode_free (& solver);

20 Platform Support

• macOS 10.13+

• iOS 11.0+

• visionOS 1.0+

21 Copyright

Copyright (C) 2025, Shyamal Suhana Chandra
All rights reserved.
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