DDRKAM Reference Manual
Data-Driven Runge-Kutta and Adams Methods

Contents

[I__Introduction

2_Euler’s Method
2.1 Overview|.
[2.2 Algorithm|

[2.3.1 euler_step| . .

Shyamal Suhana Chandra
2025

4.1 Overviewl.
[4.2 Paralle] Runge-Kutta
[4.2.1 parallel_rk_init|
[4.2.2 parallel rk_step|
[4.2.3 stacked_rk_step|

[>.1.2 forward_backward step|

[>.1.3 forward_backward_get_statistics| Lo L

[5.2.2 viterbi_step| .

[5.2.3 wviterbi_get map|

[5.3 Randomized Dynamic

Programming|

[5.3.1 randomized_dp_init|

(S}

(o oo NN NN)] S Ot Ot Ot ot

ESIEN IENERN IR RN RN |

0 00 00 00 0O 0O 0O 00 0o I

[5.3.2 randomized_dp_step|.
[5.3.3 randomized_dp_solve]

6 O(1) Approximation Solvers|

[6.1 Lookup Table Solver|
[6.1.1 lookup_table_init|
[6.1.2 lookup_table precompute|
[6.1.53 lookup_table solve|.
[6.2 Neural Network Approximator|.
[6.2.1 neural_approximator_init|
[6.2.2 neural approximator solvel oo
[6.3 Chebyshev Polynomial Approximator|
[6.3.1 chebyshev_approximator_init|
[6.3.2 chebyshev_approximator_solvel oo 0o

[7 Causal and Granger Causality Solvers|

[7.2.2 causal_adams_step|.
[7.3 Granger Causality Solver|
[7.3.1 granger_causality_init|
[7.3.2 granger_causality_step|
[7.3.3 granger_causality_get matrix| Lo

8 Quantum ODE Solver|

[8.1 quantum_ode_init| L.
[8.2 quantum_ode_step|. L
[8.3 quantum_ode_predict_tuture|o
[8.4 quantum_ode_refine|

[9 Reverse Belief Propagation with Lossless Tracing|
9.1 reverse belief 1nitl

[9.5 belief_propagate_forward|
[9.6 belief_propagate_backward|

(10 Real-Time, Online, and Dynamic Methods|
(0.1 Real-Time Methods|. o o

(10.2.2 onlinerk step|
(10.3 Dynamic Methods|.
(10.3.1 dynamicrk_init|

co 0o

O O O O OV O OO oww

O o o ©

e e
O OO OO oo

10
10
10
10
10

10
10
11
11
11
11
11

(10.3.2 dynamicrk step|.

(11 Nonlinear Programming Solvers|
(11.1 Karmarkar’s Algorithm|.
(11.1.1 karmarkar solver imitl

(11.3.1 nonlinear_pde_init|.
(11.3.2 nonlinear_pdesolvel

(12 Additional Distributed, Data-Driven, Online, Real-Time Solvers|
(12.1 Distributed Data-Driven Solverl

(13 Runge-Kutta 3rd Order Method|
3.1 OVEervIewl. o e e e e e e e e e e e

I6.1 DDREKAMSolverl

17 Map/Reduce Framework|
L1 OVEerviewl. o o o e e e e

[17.2.1 mapreduce_odeinit|
[17.2.2 mapreduce_ode_solve]
[17.2.3 mapreduce_estimate_cost|
[17.3 Example]

(18 Apache Spark Framework

I8I1 Overviewl.

[18.2.1 spark ode_init|
[18.2.2 spark odesolvel
[18.2.3 spark_estimatecost|
(18.3 Examplel

Al Al

19.2 Dataflow (Arvind)l
103 ACE (Turing) . .« . o o oo
(19.4 Systolic Array|
(19.5 TPU (Patterson)|
I1Q,!i (;I [1 1&,1(:111“:55! llIf:{iI

19.7 Spiralizer with Chord Algorithm (Chandra, Shyamal)

19.8 Lattice Architecture (Waterfront variation - Chandra, Shyamal)|

[19.9 Standard Parallel Computing Architectures|. . .
[19.105pecialized Hardware Architectures|
19.11Additional Architectures

[19.12Multiple-Search Representation Tree Algorithm)

20 Platform Support|

21 Copyright|

18
18
19
19
19
19
20

20
20
20
20
20
20
21
21
21
21
22
23
24

24

24

1

2

1 Introduction

This manual provides comprehensive documentation for the DDRKAM (Data-Driven Runge-Kutta and
Adams Methods) framework. The framework implements numerical methods for solving ordinary differ-
ential equations (ODEs) with support for traditional and hierarchical data-driven approaches.

The framework includes:

e Euler’s Method (1st order)
e Data-Driven Euler’s Method (DDEuler)

e Runge-Kutta 3rd Order Method (RK3)

Data-Driven Runge-Kutta 3rd Order (DDRK3)
e Adams Methods (AM)

Data-Driven Adams Methods (DDAM)

2 Euler’s Method

2.1 Overview

Euler’s Method is the simplest numerical method for solving ODEs. It is a first-order explicit method with
local truncation error O(h?).

2.2 Algorithm

Ynt1 = Yn + h - f(tm yn) (1)
where h is the step size, f is the ODE function, and y, is the state at time t,,.

2.3 API Reference
2.3.1 euler_step

Performs a single integration step using Euler’s method.

double euler_step (ODEFunction f, double t0O, doublex* yo0,
size_t n, double h, void* params);

Parameters:

e f: Function pointer to the ODE system

e t0: Current time

e yO: Current state vector (modified in-place)
e n: Dimension of the system

e h: Step size

e params: User-defined parameters

Returns: New time value (t0 + h)

1

1

1

2.3.2 euler_solve

Solves an ODE system over a time interval using Euler’s method.

size_t euler_solve (0DEFunction f, double t0, double t_end,
const doublex*x y0O, size_t n, double h,
void* params, double* t_out, double* y_out);

3 Data-Driven Euler’s Method

3.1 Overview

Data-Driven Euler’s Method (DDEuler) extends standard Euler’s method with a hierarchical transformer-
inspired architecture that applies adaptive corrections to improve accuracy.

3.2 Algorithm
Yn+1 = Yn + h - f(tm yn) +h-a- Attention(yn) (2)

where « is a learning rate and Attention(y,,) is computed through hierarchical transformer layers.

3.3 API Reference

3.3.1 hierarchical _euler_init

Initializes a Data-Driven Euler solver.

int hierarchical_euler_init (HierarchicalEulerSolver* solver,
size_t num_layers, size_t state_dim,
size_t hidden_dim) ;

3.3.2 hierarchical_euler_step

Performs a single integration step using Data-Driven Euler.

double hierarchical_euler_step(HierarchicalEulerSolver* solver,
ODEFunction f, double t, doublex y,
double h, void* params);

3.3.3 hierarchical _euler_solve

Solves an ODE system using Data-Driven Euler over a time interval.

size_t hierarchical_euler_solve(HierarchicalEulerSolver* solver,
ODEFunction f, double t0O, double t_end,
const double* yO, double h, void* params,
double* t_out, double* y_out);

4 Parallel and Distributed Methods

4.1 Overview

All methods support parallel, distributed, concurrent, hierarchical, and stacked execution modes. This
enables:

e Multi-threaded execution (OpenMP, pthreads)

Distributed computing (MPI)

Concurrent execution of multiple methods

Hierarchical /stacked architectures

Enhanced performance and scalability

4.2 Parallel Runge-Kutta
4.2.1 parallel_rk_init

Initialize parallel RK3 solver.

int parallel_rk_init(ParallelRKSolver* solver, size_t state_dim,
size_t num_workers, ParallelMode mode,
StackedConfig* stacked);

4.2.2 parallel_rk_step
Perform parallel RK3 step.

double parallel_rk_step(ParallelRKSolver* solver, ODEFunction f,
double t, doublex y, double h, void* params);

4.2.3 stacked _rk step
Perform stacked/hierarchical RK3 step.

double stacked_rk_step(ParallelRKSolver* solver, ODEFunction f,
double t, doublex* y, double h, void* params);

4.2.4 concurrent_rk_execute

Execute multiple RK3 instances concurrently.

int concurrent_rk_execute(ParallelRKSolver* solvers[], size_t num_solvers,
ODEFunction f, double t, const double* y, double h,
void* params, doublex** results);

5 Bayesian ODE Solvers with Dynamic Programming

5.1 Forward-Backward Solver

Probabilistic solver computing full posterior distribution.

5.1.1 forward_backward_init

Initialize forward-backward solver with state space discretization and transition matrix.

5.1.2 forward backward step

Update forward probabilities with new observation. Complexity: O(S?) where S is fixed state space size.

5.1.3 forward_backward_get _statistics

Get mean, variance, and full posterior distribution.

5.2 Viterbi Solver
Exact (MAP) solver finding most likely solution path.

5.2.1 viterbi_init

Initialize Viterbi solver.

5.2.2 viterbi_step

Update Viterbi table with new observation.

5.2.3 viterbi_get_map
Get MAP estimate and path probability.

5.3 Randomized Dynamic Programming

Adaptive control via Monte Carlo value estimation.

5.3.1 randomized _dp_init

Initialize randomized DP solver with sampling parameters.

5.3.2 randomized dp_step

O(1) step: estimate value and choose optimal control.
5.3.3 randomized_dp_solve

Solve ODE using randomized DP with backward induction.

6 O(1) Approximation Solvers

Constant-time approximation methods for hard real-time constraints.

6.1 Lookup Table Solver

Pre-computed solutions with O(1) lookup and bilinear interpolation.

6.1.1 lookup_table_init

Initialize lookup table solver with grid dimensions.

6.1.2 lookup_table precompute

Pre-compute solution grid offline (can use any method).

6.1.3 lookup_table_solve

O(1) lookup with bilinear interpolation.

6.2 Neural Network Approximator

Neural network for O(1) solution approximation.

6.2.1 neural approximator_init

Initialize neural network with layer sizes.

6.2.2 neural approximator_solve

O(1) forward pass to approximate solution.

6.3 Chebyshev Polynomial Approximator

Polynomial approximation with O(k) ~ O(1) evaluation.

6.3.1 chebyshev_approximator_init

Initialize Chebyshev approximator.

6.3.2 chebyshev_approximator_solve

O(1) Chebyshev evaluation using Clenshaw’s algorithm.

7 Causal and Granger Causality Solvers

7.1 Causal RK4 Solver

Strictly causal RK4 using only past information.

7.1.1 causal_rk4_init

Initialize causal RK4 solver.

7.1.2 causal rk4 step
O(1) causal RK4 step.

7.2 Causal Adams Solver

Multi-step Adams method with causal constraints.

7.2.1 causal_adams_init

Initialize causal Adams solver.

7.2.2 causal_adams_step

O(1) causal Adams step.

7.3 Granger Causality Solver

Analyzes causal relationships and adapts solving strategy.

7.3.1 granger_causality_init

Initialize Granger causality solver.

7.3.2 granger_causality_step

O(1) step with adaptive solving based on causality.

7.3.3 granger_causality get matrix

Get Granger causality matrix.

8 Quantum ODE Solver

Quantum-inspired nonlinear ODE solver for post-real-time future prediction.

8.1 quantum_ode_init

Initialize quantum ODE solver.

8.2 quantum_ode_step

Quantum-inspired optimization step.

8.3 quantum_ode_predict_future

Predict future states using quantum superposition.

8.4 quantum_ode_refine

Post-real-time refinement for improved accuracy.

9 Reverse Belief Propagation with Lossless Tracing

Backwards uncertainty propagation with lossless state tracing.

9.1 reverse_belief init

Initialize reverse belief propagation solver with lossless tracing.

10

1

2

9.2 reverse_belief forward _solve

Solve forward and build lossless trace (stores exact states, derivatives, Jacobians).

9.3 reverse_belief reverse_solve

Propagate beliefs backwards using lossless trace.

9.4 reverse_belief smooth

Combine forward and reverse passes for optimal smoothed estimates.

9.5 belief_propagate_forward
Propagate belief forward: P(t + At) = J - P(t) - JT.

9.6 Dbelief propagate_backward
Propagate belief backward: P(t) = J~- P(t + At) - (J71)T.

10 Real-Time, Online, and Dynamic Methods

10.1 Real-Time Methods

Real-time methods process streaming data with minimal latency.

10.1.1 realtime_rk_init

Initialize real-time RK3 solver.

int realtime_rk_init (RealtimeRKSolver* solver, size_t state_dim,
double step_size, DataCallback callback,
void* callback_data);

10.1.2 realtime_rk_step

Perform real-time RK3 step with streaming support.

double realtime_rk_step(RealtimeRKSolver* solver, ODEFunction f,
double t, doublex y, double h, void* params);

10.2 Online Methods

Online methods adapt to incoming data with incremental learning.

10.2.1 online_rk_init

Initialize online RK3 solver.

int online_rk_init (OnlineRKSolver* solver, size_t state_dim,
double initial_step_size, double learning_rate);

11

10.2.2 online_rk_step

Perform online RK3 step with adaptive step size.

double online_rk_step(OnlineRKSolver* solver, ODEFunction f,
double t, doublex y, void* params);

10.3 Dynamic Methods

Dynamic methods provide fully adaptive execution.

10.3.1 dynamic_rk_init

Initialize dynamic RK3 solver.

int dynamic_rk_init(DynamicRKSolver* solver, size_t state_dim,
double initial_step_size, double adaptation_rate);

10.3.2 dynamic_rk_step

Perform dynamic RK3 step with adaptive parameters.

double dynamic_rk_step(DynamicRKSolver* solver, ODEFunction f,
double t, double* y, void* params);

11 Nonlinear Programming Solvers

11.1 Karmarkar’s Algorithm

Karmarkar’s Algorithm is a polynomial-time interior point method for linear programming. It provides
guaranteed polynomial-time convergence for linear programming problems.

11.1.1 karmarkar_solver_init

Initialize Karmarkar solver.

int karmarkar_solver_init (KarmarkarSolver* solver, size_t state_dim,
ADAMSolverType type, double alpha, double beta,
double mu, double epsilon, const doublex*x c,
const doublex*x A, const doublex*x b,
size_t num_constraints);

11.1.2 karmarkar_ode_solve

Solve ODE using Karmarkar’s algorithm.

int karmarkar_ode_solve (KarmarkarSolver* solver, ODEFunction f,
double t0O, double t_end, const doublex yO0,
void* params, double* y_out);

12

11.2 Nonlinear ODE Solver

11.2.1 nonlinear_ode_init

Initialize nonlinear ODE solver using NLP methods.

int nonlinear_ode_init(NonlinearODESolver* solver, size_t state_dim,
NLPSolverType solver_type, ObjectiveFunction objective,
ConstraintFunction constraints, void* params);

11.2.2 nonlinear_ode_solve

Solve ODE using nonlinear programming.

int nonlinear_ode_solve(NonlinearODESolver* solver, ODEFunction f,
double t0O, double t_end, const doublex*x yO0,
double* y_out);

11.3 Nonlinear PDE Solver

11.3.1 nonlinear_pde_init

Initialize nonlinear PDE solver.

int nonlinear_pde_init(NonlinearPDESolver* solver, size_t spatial_dim,
const size_t* grid_size, NLPSolverType solver_type,
PDEFunction pde_func, void* params);

11.3.2 nonlinear_pde_solve

Solve PDE using nonlinear programming.

int nonlinear_pde_solve(NonlinearPDESolver* solver, double tO, double t_end,
const double* u0, double* u_out);

12 Additional Distributed, Data-Driven, Online, Real-Time Solvers

12.1 Distributed Data-Driven Solver

Combines distributed computing with data-driven methods.

12.2 Online Data-Driven Solver

Combines online learning with data-driven methods.

12.3 Real-Time Data-Driven Solver

Combines real-time processing with data-driven methods.

12.4 Distributed Online Solver

Combines distributed computing with online learning.

13

12.5 Distributed Real-Time Solver

Combines distributed computing with real-time processing.

13 Runge-Kutta 3rd Order Method

13.1 Overview

The Runge-Kutta 3rd order method provides a good balance between accuracy and computational efficiency
for solving ODEs.

13.2 API Reference
13.2.1 rk3 step

Performs a single integration step using RK3.

1 double rk3_step (0DEFunction f, double t0, doublex yO,
2 size_t n, double h, void* params);

Parameters:
e f: Function pointer to the ODE system

e t0: Current time

yO: Current state vector (modified in-place)

e n: Dimension of the system

h: Step size
e params: User-defined parameters

Returns: New time value (t0 + h)

13.2.2 rk3_solve

Solves an ODE system over a time interval.

1 size_t rk3_solve (0ODEFunction f, double tO, double t_end,
2 const doublex* y0O, size_t n, double h,
3 void* params, double* t_out, double* y_out);

Parameters:
e f: Function pointer to the ODE system

t0: Initial time

t_end: Final time

yO0: Initial state vector

e n: Dimension of the system

h: Step size

14

10

11

12

13

14

e params: User-defined parameters
e t_out: Output time array (allocated by caller)
e y out: Output state array (n x num_steps, allocated by caller)

Returns: Number of steps taken

13.3 Example

void lorenz(double t, const double* y, double* dydt, void* params) {
double* p = (double*)params;
double sigma = p[0], rho = p[1l], beta = pl[2];
dydt [0] = sigma * (y[1]l - y[01);
dydt [1] y[0] * (rho - y[2]) - y[1];
dydt [2] y[0] = y[1] - beta * y[2];

double params[3] = {10.0, 28.0, 8.0/3.0};

double yO[3] = {1.0, 1.0, 1.0};

double t_out [100];

double y_out [300];

size_t steps = rk3_solve(lorenz, 0.0, 1.0, yO, 3, 0.01,
params, t_out, y_out);

14 Adams Methods

14.1 Adams-Bashforth 3rd Order

Predictor step for multi-step integration.

void adams_bashforth3 (0DEFunction f, const doublex*x t,
const double* y, size_t n, double h,
void* params, double* y_pred);

14.2 Adams-Moulton 3rd Order

Corrector step for multi-step integration.

void adams_moulton3 (0DEFunction f, const doublex t,
const double* y, size_t n, double h,
void* params, const doublex*x y_pred,
double* y_corr);

15 Hierarchical Runge-Kutta Method

15.1 Overview

The hierarchical RK method uses a transformer-like architecture with multiple processing layers and at-
tention mechanisms.

15

15.2 API Reference
15.2.1 hierarchical _rk_init

Initializes a hierarchical RK solver.

int hierarchical_rk_init (HierarchicalRKSolver* solver,
size_t num_layers, size_t state_dim,
size_t hidden_dim);

Returns: 0 on success, -1 on failure

15.2.2 hierarchical _rk_free

Frees resources allocated by the solver.

void hierarchical_rk_free(HierarchicalRKSolver* solver);

15.2.3 hierarchical rk_solve

Solves an ODE using the hierarchical method.

size_t hierarchical_rk_solve(HierarchicalRKSolver* solver,
ODEFunction f, double tO, double t_end,

const double* y0, double h, voidx* params,

double* t_out, double* y_out);

16 Objective-C Framework

16.1 DDRKAMSolver

Main solver class for Objective-C applications.

DDRKAMSolver* solver

[[DDRKAMSolver alloc]

initWithDimension:3];
NSDictionary* result = [solver solveWithFunction:~(double t,
const doublex y,
doublex* dydt,
void* params) {

} startTime:0.0 endTime:1.0
initialState:@[@1.0, @1.0, @1.0]
stepSize:0.01 params:NULL];

16.2 DDRKAMVisualizer

Visualization component for plotting solutions.

DDRKAMVisualizer* viz = [[DDRKAMVisualizer alloc] init];
NSView* view = [viz createVisualizationViewWithTime:timeArray
state:stateArray
dimension:3];
[viz exportToCSV:@"/path/to/output.csv"
time:timeArray
state:stateArrayl];

16

16.3 DDRKAMHierarchicalSolver

Hierarchical solver for Objective-C.

1 DDRKAMHierarchicalSolver* solver =
2 [[DDRKAMHierarchicalSolver alloc]
3 initWithDimension:3 numlLayers:4 hiddenDim:32];

17 Map/Reduce Framework

17.1 Overview

The Map/Reduce framework provides distributed ODE solving on commodity hardware with fault tol-
erance through redundancy. It partitions the state space across mapper nodes, processes derivatives in
parallel, and aggregates results through reducer nodes.

17.2 API Reference

17.2.1 mapreduce_ode_init

Initializes a Map/Reduce ODE solver.

1 int mapreduce_ode_init (MapReduceODESolver* solver,
2 size_t state_dim,
3 const MapReduceConfig* config);

Parameters:

e solver: Pointer to Map/Reduce solver structure

e state dim: Dimension of the ODE system

e config: Configuration structure with mapper/reducer counts, redundancy settings, etc.

Returns: 0 on success, -1 on failure

17.2.2 mapreduce_ode_solve

Solves an ODE system using Map/Reduce framework.

1 int mapreduce_ode_solve (MapReduceODESolver* solver,

2 ODEFunction £,

3 double tO, double t_end,

4 const doublex yoO,

5 double h, void* params,

6 double* y_out);
Parameters:

e solver: Initialized Map/Reduce solver
e f: ODE function pointer
e t0, t_end: Time interval

e yO: Initial state

17

10

11

12

13

14

15

16

17

18

19

20

21

22

e h: Step size
e params: User-defined parameters
e y_out: Output state

Returns: 0 on success, -1 on failure

17.2.3 mapreduce_estimate_cost

Estimates the computational cost for Map/Reduce execution.

double mapreduce_estimate_cost(const MapReduceODESolver* solver,
double* compute_hours,
double* network_cost);

17.3 Example

#include "mapreduce_solvers.h"

MapReduceODESolver solver;
MapReduceConfig config = {

.num_mappers = 4,
.num_reducers = 2,
.chunk_size = 100,
.enable_redundancy = 1,
.redundancy_factor = 3,
.use_commodity_hardware = 1,
.network_bandwidth = 100.0,
.compute_cost_per_hour = 0.10

};

mapreduce_ode_init (&solver, 1000, &config);

double yO0[1000] = {1.0, ...};

double y_out [1000];

mapreduce_ode_solve (&solver, my_ode, 0.0, 1.0,
double cost = mapreduce_estimate_cost (&solver,

mapreduce_ode_free (&solver) ;

18 Apache Spark Framework

18.1 Overview

The Apache Spark framework provides distributed ODE solving using Resilient Distributed Datasets
(RDDs) for fault-tolerant computation. Spark offers superior performance for iterative algorithms through

RDD caching and lineage-based recovery.

18

yoO, O.

NULL ,

01, NULL,

NULL) ;

y_out) ;

18.2 API Reference
18.2.1 spark_ode_init

Initializes a Spark ODE solver.

1 int spark_ode_init (Spark0DESolver* solver,
2 size_t state_dim,
3 const SparkConfig* config);

Parameters:

e solver: Pointer to Spark solver structure

e state dim: Dimension of the ODE system

e config: Configuration structure with executor counts, caching settings, etc.

Returns: 0 on success, -1 on failure

18.2.2 spark_ode_solve

Solves an ODE system using Spark framework.

1 int spark_ode_solve (SparkODESolver* solver,

2 ODEFunction f,
3 double t0O, double t_end,
4 const doublex yO,
5 double h, void* params,
6 double* y_out);
Parameters:
e solver: Initialized Spark solver

f: ODE function pointer

t0, t_end: Time interval

yO0: Initial state

h: Step size
e params: User-defined parameters
e y_out: Output state

Returns: 0 on success, -1 on failure

18.2.3 spark_estimate_cost

Estimates the computational cost for Spark execution.

1 double spark_estimate_cost(const Spark0ODESolver* solver,

2 double* compute_hours,
3 double* network_cost,
4 double* storage_cost);

19

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

18.3 Example

#include "spark_solvers.h"

Spark0ODESolver solver;
SparkConfig config = {

.num_executors = 4,
.cores_per_executor = 2,
.memory_per_executor = 2048,
.num_partitions = 8,
.enable_caching = 1,
.enable_checkpointing = 1,
.checkpoint_interval = 1.0,
.use_commodity_hardware = 1,
.network_bandwidth = 100.0,
.compute_cost_per_hour = 0.10,
.enable_dynamic_allocation = 1

};

spark_ode_init (&solver, 1000, &config);

double y0[1000] = {1.0, ...};

double y_out[1000];

spark_ode_solve (&solver, my_ode, 0.0, 1.0,
double cost = spark_estimate_cost (&solver,

spark_ode_free (&solver);

19 Non-Orthodox Architectures

19.1 Micro-Gas Jet Circuit

Micro-gas jet circuits use fluid dynamics for computation. See nonorthodox_architectures.h for APIL

19.2 Dataflow (Arvind)

yoO, O.

NULL,

Tagged token dataflow computing for fine-grained parallelism.

19.3 ACE (Turing)

Turing’s stored-program computer architecture implementation.

19.4 Systolic Array

Regular array of processing elements with local communication.

19.5 TPU (Patterson)

Google TPU architecture for matrix acceleration.

20

01, NULL, y_out);

NULL ,

NULL) ;

10

11

10

11

19.6 GPU Architectures
Support for CUDA, Metal, Vulkan, and AMD GPU acceleration.

19.7 Spiralizer with Chord Algorithm (Chandra, Shyamal)

Spiralizer architecture combining Chord distributed hash tables with Robert Morris collision hashing (MIT)
and spiral traversal patterns.

API:

SpiralizerChordConfig config = {
.num_nodes = 256,
.finger_table_size = 8,
.hash_table_size = 1024,
.enable_morris_hashing = 1,
.enable_spiral_traversal = 1

};

SpiralizerChordSolver solver;

spiralizer_chord_ode_init (&solver, n, &config);
spiralizer_chord_ode_solve (&solver, f, t0O, t_end, yO, h, params, y_out);
spiralizer_chord_ode_free(&solver);

19.8 Lattice Architecture (Waterfront variation - Chandra, Shyamal)

Variation of Turing’s Waterfront architecture, presented by USC alum from HP Labs at MIT event online
at Strata. Multi-dimensional lattice with Waterfront buffering.

API:

LatticeWaterfrontConfig config = {
.lattice_dimensions = 4,
.nodes_per_dimension = 16,
.waterfront_size = 256,
.enable_waterfront_buffering = 1,
.enable_lattice_routing = 1
};
LatticeWaterfrontSolver solver;
lattice_waterfront_ode_init (&solver, n, &config);
lattice_waterfront_ode_solve (&solver, f, t0O, t_end, yO, h, params, y_out);
lattice_waterfront_ode_free(&solver) ;

19.9 Standard Parallel Computing Architectures

MPI (Message Passing Interface):
MPIConfig config = {

.num_processes = 8,

.process_rank = 0,
.communication_buffer_size = 1024,
.enable_collective_ops = 1

};

MPISolver solver;

mpi_ode_init (&solver, n, &config);

mpi_ode_solve (&solver, f, t0, t_end, yO, h, params, y_out);
mpi_ode_free(&solver) ;

21

10

11

OpenMP (Open Multi-Processing):

OpenMPConfig config = {
.num_threads = 8,
.chunk_size = 64,
.schedule_type = 1,
.enable_affinity =1
3
OpenMPSolver solver;
openmp_ode_init (&solver, n, &config);
openmp_ode_solve (&solver, f, tO, t_end, yO, h, params, y_out);
openmp_ode_free (&solver);

Pthreads (POSIX Threads):

PthreadsConfig config = {
.num_threads = 8,
.enable_work_stealing = 1,
.enable_barrier_sync = 1
};
PthreadsSolver solver;
pthreads_ode_init (&solver, n, &config);
pthreads_ode_solve (&solver, f, t0O, t_end, yO, h, params, y_out);
pthreads_ode_free (&solver) ;

19.10 Specialized Hardware Architectures

FPGA AWS F1 (Xilinx UltraScale+):

FPGAAWSF1Config config = {
.num_fpga_devices = 1,
.num_logic_cells = 2500000,

.num_dsp_slices = 6840,
.pcie_bandwidth = 16,
.enable_hls_acceleration = 1

};

FPGAAWSF1Solver solver;

fpga_aws_fl_ode_init(&solver, n, &config);
fpga_aws_f1_ode_solve(&solver, f, tO, t_end, yO, h, params, y_out);
fpga_aws_f1l_ode_free(&solver);

TilePU Sunway (SW26010):
TilePUSunwayConfig config = {

.num_core_groups = 4,
.cores_per_group = 64,
.num_management_cores = 4,
.enable_dma = 1,
.enable_register_communication = 1

};

TilePUSunwaySolver solver;
tilepu_sunway_ode_init (&solver, n, &config);
tilepu_sunway_ode_solve (&solver, f, t0O, t_end, yO, h, params, y_out);
tilepu_sunway_ode_free (&solver);

Coprocessor Intel Xeon Phi:

22

© oo ~ (=2} ot = w N -

[
o

-
—

CoprocessorXeonPhiConfig config = {

};

.num_cores = 72,
.num_threads_per_core = 4,
.high_bandwidth_memory = 16,
.enable_wide_vector = 1,
.enable_mic_architecture = 1

CoprocessorXeonPhiSolver solver;

coprocessor_xeon_phi_ode_init (&solver, n, &config);
coprocessor_xeon_phi_ode_solve (&solver, f, t0O, t_end, yO, h, params, y_out);
coprocessor_xeon_phi_ode_free (&solver);

19.11 Additional Architectures

See nonorthodox_architectures.h for:

Standard Parallel Computing: MPI (Message Passing Interface), OpenMP (Open Multi-Processing),
Pthreads (POSIX Threads)

GPGPU (General-Purpose GPU) for platform-agnostic GPU computing
Vector Processor architecture for SIMD data-parallel operations

Specialized Hardware: ASIC (Application-Specific Integrated Circuit), FPGA (Field-Programmable
Gate Array), FPGA AWS F1 (Xilinx UltraScale+), DSP (Digital Signal Processor)

Quantum Processing Units: QPU Azure (Microsoft Quantum), QPU Intel Horse Ridge (cryogenic
quantum control)

Specialized Processing Units: TilePU Mellanox (Tile-GX72), TilePU Sunway (SW26010), DPU Mi-
crosoft (biological computation), MFPU (Microfluidic Processing Unit), NPU (Neuromorphic Pro-
cessing Unit), LPU Lightmatter (photonic computing)

AsAP (Asynchronous Array of Simple Processors) - UC Davis architecture

Coprocessor: Intel Xeon Phi many-core coprocessor with wide vector units

Massively-Threaded (Korf) - Frontier search with massive threading

STARR (Chandra et al.) - Semantic memory architecture - https: //github.com/shyamalschandra/STARR
TrueNorth (IBM), Loihi (Intel), BrainChips - Neuromorphic architectures

Racetrack (Parkin), Phase Change Memory (IBM Research)

Lyric (MIT), HW Bayesian Networks (Chandra)

Semantic Lexographic Binary Search (Chandra & Chandra)

Kernelized SPS Binary Search (Chandra, Shyamal)

Multiple-Search Representation Tree Algorithm

23

10

11

12

13

14

19.12 Multiple-Search Representation Tree Algorithm

Uses multiple search strategies (BFS, DFS, A* Best-First) with tree and graph state representations.

API:

MultipleSearchTreeConfig config = {
.max_tree_depth = 100,
.max_nodes = 10000,
.num_search_strategies = 4,
.enable_bfs = 1,
.enable_dfs 1,
.enable_astar = 1,
.enable_best_first = 1,
.heuristic_weight = 1.0

};

MultipleSearchTreeSolver solver;
multiple_search_tree_ode_init (&solver, n, &config);
multiple_search_tree_ode_solve (&solver, f, t0O, t_end,
multiple_search_tree_ode_free(&solver);

20 Platform Support

e macOS 10.13+
e i0OS 11.0+

e visionOS 1.0+

21 Copyright

Copyright (C) 2025, Shyamal Suhana Chandra
All rights reserved.

24

yO,

h,

params,

y_out);

	Introduction
	Euler's Method
	Overview
	Algorithm
	API Reference
	euler_step
	euler_solve

	Data-Driven Euler's Method
	Overview
	Algorithm
	API Reference
	hierarchical_euler_init
	hierarchical_euler_step
	hierarchical_euler_solve

	Parallel and Distributed Methods
	Overview
	Parallel Runge-Kutta
	parallel_rk_init
	parallel_rk_step
	stacked_rk_step
	concurrent_rk_execute

	Bayesian ODE Solvers with Dynamic Programming
	Forward-Backward Solver
	forward_backward_init
	forward_backward_step
	forward_backward_get_statistics

	Viterbi Solver
	viterbi_init
	viterbi_step
	viterbi_get_map

	Randomized Dynamic Programming
	randomized_dp_init
	randomized_dp_step
	randomized_dp_solve

	O(1) Approximation Solvers
	Lookup Table Solver
	lookup_table_init
	lookup_table_precompute
	lookup_table_solve

	Neural Network Approximator
	neural_approximator_init
	neural_approximator_solve

	Chebyshev Polynomial Approximator
	chebyshev_approximator_init
	chebyshev_approximator_solve

	Causal and Granger Causality Solvers
	Causal RK4 Solver
	causal_rk4_init
	causal_rk4_step

	Causal Adams Solver
	causal_adams_init
	causal_adams_step

	Granger Causality Solver
	granger_causality_init
	granger_causality_step
	granger_causality_get_matrix

	Quantum ODE Solver
	quantum_ode_init
	quantum_ode_step
	quantum_ode_predict_future
	quantum_ode_refine

	Reverse Belief Propagation with Lossless Tracing
	reverse_belief_init
	reverse_belief_forward_solve
	reverse_belief_reverse_solve
	reverse_belief_smooth
	belief_propagate_forward
	belief_propagate_backward

	Real-Time, Online, and Dynamic Methods
	Real-Time Methods
	realtime_rk_init
	realtime_rk_step

	Online Methods
	online_rk_init
	online_rk_step

	Dynamic Methods
	dynamic_rk_init
	dynamic_rk_step

	Nonlinear Programming Solvers
	Karmarkar's Algorithm
	karmarkar_solver_init
	karmarkar_ode_solve

	Nonlinear ODE Solver
	nonlinear_ode_init
	nonlinear_ode_solve

	Nonlinear PDE Solver
	nonlinear_pde_init
	nonlinear_pde_solve

	Additional Distributed, Data-Driven, Online, Real-Time Solvers
	Distributed Data-Driven Solver
	Online Data-Driven Solver
	Real-Time Data-Driven Solver
	Distributed Online Solver
	Distributed Real-Time Solver

	Runge-Kutta 3rd Order Method
	Overview
	API Reference
	rk3_step
	rk3_solve

	Example

	Adams Methods
	Adams-Bashforth 3rd Order
	Adams-Moulton 3rd Order

	Hierarchical Runge-Kutta Method
	Overview
	API Reference
	hierarchical_rk_init
	hierarchical_rk_free
	hierarchical_rk_solve

	Objective-C Framework
	DDRKAMSolver
	DDRKAMVisualizer
	DDRKAMHierarchicalSolver

	Map/Reduce Framework
	Overview
	API Reference
	mapreduce_ode_init
	mapreduce_ode_solve
	mapreduce_estimate_cost

	Example

	Apache Spark Framework
	Overview
	API Reference
	spark_ode_init
	spark_ode_solve
	spark_estimate_cost

	Example

	Non-Orthodox Architectures
	Micro-Gas Jet Circuit
	Dataflow (Arvind)
	ACE (Turing)
	Systolic Array
	TPU (Patterson)
	GPU Architectures
	Spiralizer with Chord Algorithm (Chandra, Shyamal)
	Lattice Architecture (Waterfront variation - Chandra, Shyamal)
	Standard Parallel Computing Architectures
	Specialized Hardware Architectures
	Additional Architectures
	Multiple-Search Representation Tree Algorithm

	Platform Support
	Copyright

