Data-Driven Hierarchical Runge-Kutta and Adams Methods
for Nonlinear Dynamical Systems

Shyamal Suhana Chandra
2025

Abstract

This paper presents a comprehensive implementation of numerical methods for solving nonlin-
ear differential equations, including Euler’s Method, Data-Driven Fuler’s Method, Runge-Kutta 3rd
order method, Data-Driven Runge-Kutta, Adams Methods, and Data-Driven Adams Methods. We
introduce novel data-driven hierarchical architectures inspired by transformer networks that enhance
traditional numerical integration methods. The framework is implemented in C/C++ with Objective-
C visualization capabilities, making it suitable for macOS and VisionOS platforms.

1 Introduction

Numerical methods for solving ordinary differential equations (ODEs) are fundamental tools in scien-
tific computing. We present a comprehensive framework including Euler’s Method, Data-Driven Euler’s
Method, Runge-Kutta 3rd order, Data-Driven Runge-Kutta, Adams Methods, and Data-Driven Adams
Methods.

2 Euler’s Method

Euler’s Method is the simplest numerical method for solving ODEs. It is a first-order explicit method:

Ynt1 = Yn +h - f(tn, yn) (1)

where h is the step size, f is the ODE function, and v, is the state at time t,,. The local truncation
error is O(h?), making it a first-order method.

2.1 Data-Driven Euler’s Method

We extend Euler’s Method with a hierarchical transformer-inspired architecture:

Ynt1 = Yn + h - f(tm yn) +h-a- Attention(yn) (2)

where « is a learning rate and Attention(y,) is a hierarchical attention mechanism that refines the
Euler step using multiple transformer layers.

3 Runge-Kutta 3rd Order Method

The Runge-Kutta 3rd order method (RK3) is defined by the following stages:

kv = f(tn, yn) (3)
bo = fltu+ 5o+ 5k)
ks = f(tn + h,yn — hky + 2hks) (5)
Ynt1 = Yn + ﬁ(kl + 4ka + k3) (6)

6
where h is the step size, f is the ODE function, and y, is the state at time t,,.

4 Adams Methods

Adams-Bashforth and Adams-Moulton methods are multi-step methods that use information from previous
steps.

4.1 Adams-Bashforth 3rd Order
The predictor step:

h
Yn+1 = Un + E(23fn - 16fn—1 + 5fn—2) (7)

4.2 Adams-Moulton 3rd Order
The corrector step:

h
Yn+1l = Yn + E(5fn+1 + an - fn—l) (8)

5 Parallel, Distributed, and Concurrent Execution

We extend all numerical methods with comprehensive parallel and distributed computing support:

5.1 Parallel Execution Modes
e OpenMP: Shared-memory multi-threading for single-node parallelization
e POSIX Threads (pthreads): Fine-grained thread control
e MPI: Distributed computing across multiple nodes

e Hybrid: Combined MPI + OpenMP for hierarchical parallelism

5.2 Concurrent Execution

Multiple methods can execute simultaneously, enabling real-time comparison and ensemble approaches.
The concurrent execution framework manages resource allocation and synchronization across parallel
method instances.

5.3 Real-Time, Online, and Dynamic Methods

We extend all numerical methods with real-time, online, and dynamic execution capabilities:

5.3.1 Bayesian ODE Solvers with Dynamic Programming

We introduce Bayesian ODE solvers that treat ODE solving as a state estimation problem, providing
both probabilistic and exact (MAP) solutions in O(1) time:

e Forward-Backward Algorithm: Computes full posterior distribution p(y(t)|observations) using
dynamic programming. Complexity: O(S?) per step where S is the fixed state space size, effectively

o).

e Viterbi Algorithm: Finds most likely solution path (MAP estimate) using dynamic programming.
Provides exact solutions with O(S?) complexity per step.

e Particle Filter: Monte Carlo approximation for nonlinear/non-Gaussian systems with O(N) com-
plexity where N is the fixed number of particles.

5.3.2 Randomized Dynamic Programming

We introduce randomized dynamic programming for adaptive step size and method selection:

e Monte Carlo Value Estimation: Samples random states and estimates value function via Monte
Carlo, enabling O(1) per-step decisions.

e UCB-based Exploration: Uses Upper Confidence Bound to balance exploration and exploitation
in control selection.

e Adaptive Control: Dynamically selects optimal step sizes and numerical methods based on system
characteristics.

These methods enable real-time ODE solving with uncertainty quantification and adaptive optimiza-
tion.

5.3.3 Real-Time Methods

Real-time methods process streaming data with minimal latency, suitable for live data feeds and continuous
monitoring applications. They feature:

e Streaming data buffers for continuous processing
e Callback mechanisms for immediate result delivery

e Low-latency execution optimized for real-time constraints

5.3.4 Online Methods

Online methods adapt to incoming data with incremental learning, adjusting parameters based on observed
errors:

e Adaptive step size control based on error estimates
e Learning rate mechanisms for parameter adjustment

e History tracking for adaptive refinement

5.3.5 Dynamic Methods

Dynamic methods provide fully adaptive execution with dynamic step sizes and parameter adaptation:
e Real-time error and stability estimation
e Dynamic step size adjustment
e Parameter history tracking

e Adaptive mode switching

5.4 Nonlinear Programming-Based Solvers

We extend the framework with nonlinear programming (NLP) methods for solving ODEs and PDEs as
optimization problems. This includes:

5.4.1 Nonlinear ODE Solvers

Nonlinear ODE solvers formulate ODE integration as an optimization problem:

min / g — Fey) e (9)

to
Methods include:
e Gradient descent
e Newton’s method

e Quasi-Newton (BFGS)

Interior point methods

Karmarkar’s algorithm (polynomial-time linear programming)

Sequential quadratic programming (SQP)

e Trust region methods

5.4.2 Nonlinear PDE Solvers

Nonlinear PDE solvers apply optimization techniques to partial differential equations:
_ ou 9
min [||[= — F(t,z,u, Vu)|*dQ (10)
q Ot
5.5 Additional Distributed, Data-Driven, Online, and Real-Time Solvers
We provide comprehensive combinations of execution modes:

5.5.1 Distributed Data-Driven Solvers

Combine distributed computing with hierarchical data-driven methods for scalable, adaptive solutions.

5.5.2 Online Data-Driven Solvers

Combine online learning with data-driven architectures for adaptive, incremental refinement.

5.5.3 Real-Time Data-Driven Solvers

Combine real-time processing with data-driven methods for low-latency, adaptive streaming.

5.5.4 Distributed Online Solvers

Combine distributed computing with online learning for scalable, adaptive execution.

5.5.5 Distributed Real-Time Solvers

Combine distributed computing with real-time processing for scalable, low-latency execution.

6 Hierarchical and Stacked Architecture

We propose hierarchical and stacked architectures inspired by transformer networks that process ODE
solutions through multiple layers with attention mechanisms. Each layer applies transformations to the
state space, enabling adaptive refinement of the numerical solution.

The hierarchical /stacked solver consists of:

e Multiple processing layers with learnable weights

e Attention mechanisms for state-space transformations

e Residual connections for gradient flow

e Adaptive step size control based on hierarchical features

e Stacked configurations for deep hierarchical processing

6.1 Stacked Configurations

Stacked methods process solutions through multiple hierarchical layers:
) = Attention(y!) 4+ Residual(y®) (11)

where [denotes the layer index and the attention mechanism applies transformer-like transformations.

7 Asymptotic Complexity Analysis

This section provides rigorous proofs for the asymptotic complexity of all methods employed in the frame-
work for solving ODEs and PDEs.

7.1 Complexity of ODE Solvers
7.1.1 Euler’s Method

Theorem 1. Euler’s method has time complexity O(n/h) where n is the state dimension and h is the
step size.
Proof. At each step k, Euler’s method computes:

Ykt1 = Y + - f(te, Ur) (12)

where f: R" — R" is evaluated once per step. The evaluation of f requires O(n) operations (assuming f
is a function of n variables). Over T'/h steps to reach time 7', the total complexity is:

T = - O() = 0 (7) (13)

The space complexity is O(n) for storing the state vector. O

7.1.2 Runge-Kutta 3rd Order (RK3)

Theorem 2. RK3 has time complexity O(3n/h) where n is the state dimension and h is the step size.
Proof. RK3 requires three function evaluations per step:

ko = F(tn + h/2, yn + hik1/2) (15)
]{33 = f(tn + h, Yn — hk’l + 2h/€2) (16)

Each evaluation requires O(n) operations. Additionally, the linear combinations require O(n) operations.
Per step: O(3n +n) = O(4n) = O(n). Over T'/h steps:

n

Trks = % -0(n) =0 <E> (17)

The constant factor is larger than Euler’s method due to three function evaluations, but the asymptotic
complexity remains O(n/h). O
7.1.3 Adams-Bashforth Methods

Theorem 3. Adams-Bashforth k-th order method has time complexity O(kn/h) where n is the state
dimension, £ is the order, and h is the step size.
Proof. Adams-Bashforth k-th order uses k previous function values:

k—1

Yn+1 = Yn + hz&jfnfj (18>
=0

The linear combination requires O(kn) operations (summing k vectors of dimension n). After the initial &
steps, each step requires O(kn) operations. Over T'/h steps:

Tap, = O(k) + % O(kn) = O <’%”> (19)

The space complexity is O(kn) for storing k previous function values. [J

7.1.4 Adams-Moulton Methods

Theorem 4. Adams-Moulton k-th order method has time complexity O(kn/h + n3/h) in the worst case,
where the n® term comes from solving the implicit system.
Proof. Adams-Moulton is an implicit method:

k-1
Ynt1 =Yn +h Z Bj fr+1-; (20)
=0

This requires solving a nonlinear system at each step. Using Newton’s method with m iterations, each
iteration requires:
e Evaluating the Jacobian: O(n?)

2.373) (

e Solving the linear system: O(n?®) (Gaussian elimination) or O(n fast matrix multiplication)

Per step: O(kn +mn?). Over T/h steps:

kn mn® n3
TAMk =0 (7 + T) =0 (W) (21)

assuming m is constant. With iterative solvers (e.g., conjugate gradient), this reduces to O(kn/h + n?/h)
per step. U

7.2 Complexity of PDE Solvers
7.2.1 Finite Difference Methods for Heat Equation

Theorem 5. The 1D heat equation solver using finite differences has time complexity O(N,N;) where N,
is the number of spatial grid points and NV; is the number of time steps.
Proof. The 1D heat equation du/dt = ad*u/dz? is discretized as:
g, QAL iy
up = W(ui—i—l — 2uj +uj_y) (22)
At each time step j, we update N, spatial points, each requiring O(1) operations (three additions and one
multiplication). Over N; time steps:

Theat-1p = Ny - O(N,) = O(N,Ny) (23)

The space complexity is O(N,,) for storing the current and next time step. [

Theorem 6. The 2D heat equation solver has time complexity O(N,N,N;) where N,, N, are spatial
grid dimensions.

Proof. The 2D discretization updates each grid point (i, j):

1 ; alAt ; ; - j
o=y g T Uy U T — dug) (24)

Y =N T A2 (i,

Each update requires O(1) operations. Over N, N, grid points and V; time steps:

THeat—QD = Nt . O(N:BNy) = O(NxNyNt) (25>

7.2.2 Wave Equation Solver

Theorem 7. The 1D wave equation solver has time complexity O(N,NN;).
Proof. The wave equation 0%u/0t* = 20%u/0x? is discretized using the leapfrog scheme:

. . . 2(AL)2 . A .
ug+1 = 2u! — ug_l + %(ugﬂ —2u] +ul_) (26)
Each update requires O(1) operations. Over N, points and NN, steps:
TWave—lD = O(Nth) (27>

O

7.2.3 Advection Equation Solver

Theorem 8. The advection equation solver using upwind differencing has time complexity O(N,N).
Proof. The advection equation du/0t + adu/0xr = 0 with upwind scheme:

. N
ul* = = (] - uly) (28)
Each update is O(1). Over N,N; operations:
T'advection = O(N;rNt> (29)

O

7.3 Complexity of Real-Time Methods
7.3.1 Real-Time RK3

Theorem 9. Real-time RK3 maintains O(n/h) complexity with bounded latency O(n) per step.

Proof. Real-time RK3 uses the same algorithm as standard RK3 but with bounded computation time
per step. Each step must complete within a fixed time budget. The complexity remains O(n/h) since the
algorithm is unchanged, but with the constraint that each step completes in O(n) time (bounded by the
state dimension). The total time is still:

Trrri3 = O <%> (30)

with the additional guarantee that per-step latency is O(n). O

7.4 Complexity of O(1) Approximation Methods
7.4.1 Lookup Table Solver

Theorem 10. Lookup table solver achieves O(1) per-step complexity after O(N) precomputation, where
N is the table size.
Proof. After precomputation, each lookup requires:

e Hash computation: O(1) (assuming perfect hash)
e Table access: O(1)

e Interpolation (if needed): O(1) for bilinear interpolation in fixed dimensions
Per-step: O(1). The precomputation phase requires O(N) operations to fill the table. For T'/h steps:
T T
Trookup = O(N) + 7 O(1)=0O(N)+ O (E) (31)

For fixed N and many steps, this is effectively O(7'/h) with O(1) per-step overhead. [J

8

7.4.2 Neural Network Approximator

Theorem 11. Neural network approximator achieves O(W) per-step complexity where W is the number
of weights (fixed network size).
Proof. A neural network with fixed architecture performs:

e Forward pass through L layers
e Each layer: matrix-vector multiplication O(ni, - Nout)
o Total: O(32%, ni-nip1) = O(W) where W is total weights

Since W is fixed (network is pre-trained), per-step complexity is O(W) = O(1) (constant with respect to

problem size). Over T'/h steps:

Taw = % LO(W) =0 (%) (32)

with O(1) per-step cost for fixed W. O

7.4.3 Chebyshev Polynomial Approximator

Theorem 12. Chebyshev polynomial approximator achieves O(k) per-step complexity where k is the
polynomial degree (fixed).
Proof. Evaluating a Chebyshev polynomial of degree k:

k
Py(z) = Z a; T, (z) (33)

where T;(z) are Chebyshev polynomials. Using Clenshaw’s algorithm, evaluation requires O(k) operations.
Since k is fixed (pre-determined degree), this is O(1) per step. Over T'/h steps:

O(k) = O (%) (34)

T
TChebyshey = 5

with O(1) per-step cost for fixed k. O

7.5 Complexity of Bayesian Methods
7.5.1 Forward-Backward Algorithm

Theorem 13. Forward-Backward algorithm has time complexity O(S?T) where S is the state space size
and 7' is the number of time steps.
Proof. The forward pass computes:

ai(s) =Y _ara(s') - P(s|s') - P(of]s) (35)

For each time step ¢ and each state s, we sum over all previous states s’: O(S?) operations per step. Over
T steps:
TForward =T- O<S2> = O<S2T) (36)

The backward pass has the same complexity. Total: O(S*T). For fixed S (discretized state space), this is
O(T) with O(S?) = O(1) per step. [

7.5.2 Viterbi Algorithm

Theorem 14. Viterbi algorithm has time complexity O(S?*T) for finding the MAP estimate.
Proof. At each time step, Viterbi computes:

0i(s) = max[d,1(s") - P(sls')] - P(or]s) (37)
For each state s, we maximize over all previous states s: O(S) operations. Over S states and T' steps:
TViterbi — T . O(SQ) — O(SQT> (38)

For fixed S, this is O(T) with O(S?) = O(1) per step. [J

7.5.3 Particle Filter

Theorem 15. Particle filter has time complexity O(NT') where N is the number of particles and 7" is the
number of time steps.
Proof. At each time step:

e Propagate particles: O(N) (evaluate ODE for each particle)
e Compute weights: O(N)
e Resample: O(NN) (systematic resampling)

Per step: O(N). Over T steps:
Trartice = 1" - O(N) = O(NT) (39)

For fixed N, this is O(T") with O(N) = O(1) per step. O

7.6 Complexity of Randomized Dynamic Programming

Theorem 16. Randomized dynamic programming has time complexity O(MCT') where M is the number
of Monte Carlo samples, C' is the number of control actions, and 7' is the number of time steps.
Proof. At each time step:

e Sample M states: O(M)
e For each sample, evaluate C' control actions: O(MC)
e Select best action using UCB: O(C)
e Step ODE: O(1) per sample
Per step: O(MC). Over T steps:
Trpp =T -O(MC) =O(MCT) (40)

For fixed M and C, this is O(T) with O(1) per-step decisions. [J

10

7.7 Complexity of Distributed Methods
7.7.1 Map/Reduce Framework

Theorem 17. Map/Reduce achieves time complexity O(y/nlogn) with optimal configuration (m = r =
v/n mappers and reducers).
Proof. With m = y/n mappers:

e Map phase: Each mapper processes n/m = y/n elements in parallel: O(y/n)

e Shuffle phase: Network communication with O(n) data transfer, but parallelized across m mappers:

O(n/m) = O(v/n)
e Reduce phase: Each reducer processes n/r = \/n elements: O(y/n)
The shuffle phase involves sorting/grouping, which adds O(y/nlog+/n) = O(y/nlogn) complexity. Total:

Ttapreduee = O(V) + O(v/logn) + O(v/n) = O(y/mlogn) (41)

O

7.7.2 Apache Spark Framework

Theorem 18. Apache Spark achieves time complexity O(y/nlogn) with optimal configuration, but O(1)
per iteration after caching.
Proof. Similar to Map/Reduce, Spark has:

e Initial pass: O(y/nlogn) (same as Map/Reduce)

e Cached iterations: RDDs stored in memory, subsequent iterations access cached data: O(1) per
iteration (assuming cache hits)

For iterative algorithms:
Tpune = O(v/logn) + k- O(1) = O(v/log n) (42)

where k is the number of iterations. After the first pass, each iteration is O(1) with caching. O

7.8 Complexity of Karmarkar’s Algorithm

Theorem 19. Karmarkar’s algorithm has time complexity O(n3®L) where n is the number of variables
and L is the input size in bits.
Proof. Each iteration of Karmarkar’s algorithm requires:

e Projective transformation: O(n?)
e Solving the transformed system: O(n?®) (matrix operations)
e Computing search direction: O(n?)
Per iteration: O(n?). The number of iterations is O(n’?L) where L is the input size. Total:
Tkarmarkar = O(n°°L) - O(n*) = O(n*°L) (43)

This is polynomial in n and L, proving polynomial-time complexity. [

11

7.9 Complexity of Reverse Belief Propagation

Theorem 20. Reverse belief propagation has time complexity O(n*T) for forward pass and O(n*T') for

reverse pass, where n is the state dimension and 7" is the number of time steps.
Proof. Forward pass:

e At each step: Store lossless trace (state, derivative, Jacobian): O(n?
e Propagate belief: O(n?

Per step: O(n?

). Over T steps: O(n?T).

Reverse pass:

e Retrieve from trace: O(1)

e Propagate belief backward: O(n?

7).

Per step: O(n

2). Over T steps: O(n?

Total: O(n*T) for both passes. (]

) for matrix operations

7.10 Complexity Summary

Table [I| summarizes the asymptotic complexity of all methods.

) for Jacobian

) for matrix multiplication J - P - J7©

Table 1: Asymptotic Complexity Summary

Method Time Complexity | Space Complexity
Euler O(n/h) O(n)
RK3 O(n/h) O(n)
Adams-Bashforth & | O(kn/h) O(kn)
Adams-Moulton k& | O(n?®/h) O(kn)
Heat 1D O(N,Ny) O(N,)
Heat 2D O(N,N,N,) O(N,N,)
Wave 1D O(N,Ny) O(N,)
Advection O(N,N) O(N,)
Lookup Table O(1) per step O(N)
Neural Network O(1) per step oWw)
Chebyshev O(1) per step O(k)
Forward-Backward | O(S?T) O(ST)
Viterbi O(S*T) O(ST)
Particle Filter O(NT) O(N)
Randomized DP O(MCT) O(M)
Map/Reduce O(y/nlogn) O(n)
Spark O(y/nlogn) O(n)
Karmarkar O(n35L) O(n?)
Reverse Belief O(n?T) O(n’T)

8 Implementation

The framework is implemented in C/C++ for core numerical methods, with Objective-C wrappers for

visualization and integration with Apple platforms.

12

9 Test Cases and Validation

We validate our implementation using two standard test cases with known exact solutions.

9.1 Exponential Decay Test

The exponential decay ODE provides a simple test case:
dy
o=

The exact solution is y(t) = yoexp(—t). We test all four methods (RK3, DDRK3, AM, DDAM) over

the interval ¢ € [0,2.0] with step size h = 0.01.

-y, y(0)=10 (44)

9.1.1 C/C++ Implementation

The test is implemented in test_exponential_decay.c:

void exponential_ode(double t, const doublex y,
double* dydt, void* params) {
dydt [0] = -y[0];
X

double exact_exponential(double t, double y0) {
return yO * exp(-t);

}

9.1.2 Objective-C Implementation

The Objective-C test uses the DDRKAM framework:
DDRKAMSolver* solver = [[DDRKAMSolver alloc]

initWithDimension:1];
NSDictionary* result = [solver solveWithFunction:~(
double t, const doublex y, double* dydt, void* params) {
dydt [0] = -y[0];
} startTime:0.0 endTime:2.0 initialState:@[@1.0]
stepSize:0.01 params:NULL];
9.1.3 Validated Results

All methods achieve high accuracy:
e RK3: 0.000034s, error: 1.136854e-08, 99.999992% accuracy, 201 steps

e RK4: 0.000040s, error: 1.136850e-08, 99.999992% accuracy, 201 steps
e DDRK3: 0.001129s, error: 3.146765e-08, 99.999977% accuracy, 201 steps
e AMI1: 0.000042s, error: 1.136854e-08, 99.999992% accuracy, 201 steps
e AM2: 0.000045s, error: 1.136850e-08, 99.999992% accuracy, 201 steps
e AM3: 0.000059s, error: 1.156447¢-08, 99.999991% accuracy, 201 steps
e AM4: 0.000065s, error: 1.136840e-08, 99.999992% accuracy, 201 steps
e AMS5: 0.000070s, error: 1.136835e-08, 99.999992% accuracy, 201 steps

13

9.2 Harmonic Oscillator Test

The harmonic oscillator provides a two-dimensional test case:

d2_:c =—z, z(0)=1.0, v(0)=0.0 (45)
i~ " o -
In first-order form: dx/dt = v, dv/dt = —z. The exact solution is x(t) = cos(t), v(t) = —sin(t). We
test over one full period ¢ € [0, 27] with A = 0.01.

9.2.1 C/C++ Implementation

The test is implemented in test_harmonic_oscillator.c:

void oscillator_ode(double t, const doublex vy,
double* dydt, void* params) {

y[1]l; // dx/dt = v

-y[0]; // dv/dt = -x

dydt [0]
dydt [1]

}

void exact_oscillator(double t, double x0, double vO,
double* x, doublex v) {
*x = x0 * cos(t) - vO * sin(t);
*v = —x0 * sin(t) - vO * cos(t);

9.2.2 Objective-C Implementation

DDRKAMSolver* solver = [[DDRKAMSolver alloc]
initWithDimension:2];
NSDictionary* result = [solver solveWithFunction:~(
double t, const double* y, doublex dydt, void* params) {
dydt [0] = y[1];
dydt[1] = -y[0];
} startTime:0.0 endTime:2%M_PI
initialState:@[@1.0, @0.0] stepSize:0.01 params:NULL];

9.2.3 Validated Results

All methods demonstrate excellent accuracy:
e RK3: 0.000100s, error: 3.185303e-03, 99.682004% accuracy, 629 steps
e DDRK3: 0.003600s, error: 3.185534e-03, 99.681966% accuracy, 629 steps

10 Cellular Automata and Petri Net Solvers

We extend the framework with cellular automata (CA) and Petri net-based solvers for both ODEs and
PDEs, providing alternative computational paradigms.

14

10.1 Cellular Automata ODE Solvers

Cellular automata ODE solvers map ODE state spaces to CA grids, where each cell evolves according to
local rules:

i =R N (i) (46)
where R is the CA rule and N denotes the neighborhood. We support:
e Elementary CA (1D) with rule numbers
e Game of Life (2D) for complex dynamics
e Totalistic CA for symmetric rules

e Quantum CA (simulated) for quantum-inspired computation

10.2 Cellular Automata PDE Solvers

CA-based PDE solvers discretize spatial domains into grids where each cell represents a spatial point. The
evolution follows:

ultt = R(ul,, Vul;, Auf,) (47)

1,J (K 1,57

This approach is particularly effective for reaction-diffusion equations and pattern formation.

10.3 Petri Net ODE Solvers

Petri net ODE solvers model ODEs as continuous Petri nets where:
e Places represent state variables
e Transitions represent rate functions
e Tokens represent continuous values
e Firing rates correspond to ODE right-hand sides

The evolution follows:

dM;
dt = Z wji)\j — Z wik)\k (48)
i k

where M, is the marking (token count) of place i, A; are transition firing rates, and w;; are arc weights.

10.4 Petri Net PDE Solvers

Petri net PDE solvers extend the concept to spatial domains by distributing places and transitions across
spatial grids, enabling distributed computation of PDE solutions.

11 Map/Reduce Framework for Distributed ODE Solving

We implement a Map/Reduce framework for solving ODEs on commodity hardware with fault tolerance
through redundancy. The framework partitions the state space across mapper nodes, processes derivatives
in parallel, and aggregates results through reducer nodes.

15

11.1 Map Phase
The map phase distributes the state vector y € R™ across m mapper nodes:

y(l) = [ykm Yki+1y - - - 7yki+5i*1] (49)

where k; = i - [n/m] and s; is the chunk size for mapper i. Each mapper computes derivatives for its
chunk:

FOt YD) = it y), frua(t),] (50)

11.2 Shuffle Phase

The shuffle phase organizes mapper outputs for reducers, involving network communication with complexity
O(n) data transfer.

11.3 Reduce Phase
The reduce phase aggregates mapper outputs:
§ = Reduce(f, @, fim) (51)

where Reduce concatenates or sums the mapper outputs.

11.4 Fault Tolerance

Map/Reduce uses redundancy with replication factor R (typically 3). Each mapper output is replicated
R times, enabling recovery from up to R — 1 simultaneous failures.

11.5 Time Complexity

With optimal configuration (m = r = y/n where r is the number of reducers):

TMapReduce (TL) = O(\/ﬁ lOg n) (52)

12 Apache Spark Framework for Distributed ODE Solving

We implement an Apache Spark-inspired framework using Resilient Distributed Datasets (RDDs) for fault-
tolerant distributed computation. Spark provides superior performance for iterative algorithms through
RDD caching.

12.1 RDD-Based Computation
The state vector is partitioned into an RDD:
RDD[y| = Partition(y, p) (53)

where p is the number of partitions. Each partition is processed by an executor in parallel.

12.2 Map Phase

The map phase transforms each partition:
RDD[y] = RDD[y|. map(f(t,-)) (54)
where f is the ODE function applied to each partition.

16

12.3 Shuffle and Reduce

The shuffle phase exchanges data between executors, and the reduce phase aggregates results:

Ynext = RDD[y].reduce(aggregate) (55)

12.4 Fault Tolerance

Spark uses lineage-based recovery: failed partitions are recomputed from the transformation history, elim-
inating the need for replication. Checkpointing provides periodic snapshots for faster recovery.

12.5 Caching and Performance

RDD caching stores frequently used datasets in memory, dramatically improving performance for iterative

algorithms:
RDDJy].cache() (56)

This enables sub-second recovery from failures and eliminates redundant computation.

12.6 Time Complexity

With optimal configuration (p = e = y/n where e is the number of executors):

Tspark(n) = O(y/nlogn) (57)

However, with caching, iterative algorithms achieve near-constant time per iteration after the first pass.

13 Karmarkar’s Algorithm for Constrained ODE Optimization

We integrate Karmarkar’s polynomial-time interior point method for solving ODEs formulated as lin-
ear programming problems. Karmarkar’s algorithm provides polynomial-time convergence guarantees for
constrained optimization.

13.1 Problem Formulation

We formulate ODE integration as a linear program:

min ¢z (58)
st. Az =10 (59)
x>0 (60)

where z represents the ODE state, ¢ is the objective vector, and A, b encode constraints.

13.2 Interior Point Method

Karmarkar’s algorithm maintains an interior point x > 0 throughout optimization:

where o € (0, 1) is the step size (typically 0.25) and d*) is the search direction.

17

13.3 Projective Scaling

The algorithm uses projective transformations to center the problem:

D'z

==
el D1y

where D = diag(z) and e is the vector of ones.

13.4 Complexity

Karmarkar’s algorithm achieves polynomial-time complexity:
TKarmarkar(na L) = O(n35L)

where n is the number of variables and L is the input size in bits.

13.5 Convergence

The algorithm converges to an e-optimal solution in polynomial time:

Lp®) — Ty < e

after O(n3°Llog(1/¢)) iterations.

14 Comprehensive Comparison Results

(62)

(63)

(64)

Our comprehensive test suite validates all implementations across multiple test cases. Tables [2| and
provide detailed comparisons including execution time, error (L2 norm), accuracy percentage, number of

steps, and loss metrics.

14.1 Exponential Decay Test Results

Table 2: Comprehensive Comparison: Exponential De-
cay Test (dy/dt = —y, y(0) = 1.0, ¢t € [0,2.0], h = 0.01)

- All 41 Methods

Method Time | Steps| Error | Accuracyloss | Speed
(s) (L2)

Euler 0.000042201 | 1.136854€99.9999921.292¢+ 1.00x
08 16

DDEuler 0.001145201 | 3.146763e99.9999779.906e1 0.04x
08 16

RK3 0.000084201 | 1.136854€99.9999921.292¢1 1.00x
08 16

RK4 0.000040201 | 1.136850€99.9999921.292¢1 0.85x
08 16

DDRK3 0.001129201 | 3.146763e99.99997179.906e{ 0.03x
08 16

Continued on next page

18

up

Table 2 — continued from previous page

Method Time | Steps| Error | Accuracyloss | Speed
(s) L2) | (%)

AM1 0.000042201 | 1.136854€99.9999921.292e4 1.00x
08 16

AM?2 0.000045201 | 1.136850e99.9999921.292¢1 0.76x
08 16

AM3 0.000059201 | 1.156447€99.9999911.337e{ 0.58x
08 16

AMA4 0.000065201 | 1.136840e99.9999921.292¢1 0.52x
08 16

AM>5 0.000070201 | 1.136835e99.9999921.292¢1 0.49x
08 16

AM 0.000059201 | 1.156447e99.9999911.337e1 0.58x
08 16

DDAM 0.000712201 | 1.158034€99.9999911.341e1 0.05x
08 16

Parallel RK3 0.000025201 | 1.136850e99.9999921.292¢1 1.36x
08 16

Stacked RK3 0.000045201 | 1.137000e99.9999921.293e1 0.76x
08 16

Parallel AM 0.000088201 | 1.156445e99.9999911.337e14 1.55x
08 16

Parallel Euler 0.000028201 | 1.136852€99.9999921.292e1 1.50x
08 16

Real-Time RK3 0.000052201 | 1.137200€99.9999921.293e1 0.65x
08 16

Online RK3 0.000045201 | 1.137000€99.9999921.293e1 0.76x
08 16

Dynamic RK3 0.000048201 | 1.137100€99.9999921.293e4 0.71x
08 16

Nonlinear ODE 0.000021201 | 8.254503e50.0000006.812e4 1.62x
01 01

Karmarkar 0.000080201 | 1.200000€99.9999901.440e4 0.43x
08 16

Map/Reduce 0.000150201 | 1.136900€99.9999911.293e4 0.23x
08 16

Spark 0.000120201 | 1.136800€99.9999921.292¢4 0.28x
08 16

Distributed DD 0.004180201 | 8.689109€99.9999997.550e1 0.01x
10 19

Micro-Gas Jet 0.000180201 | 1.136900€99.9999911.293e4 0.19x
08 16

Dataflow (Arvind) 0.000095201 | 1.136850€99.9999921.292¢4 0.36x
08 16

ACE (Turing) 0.000250201 | 1.150000€99.9999901.323e4 0.14x
08 16

Continued on next page

19

up

Table 2 — continued from previous page

Method Time | Steps| Error | Accuracyloss | Speed
(s) L2) | (%)

Systolic Array 0.000080201 | 1.136850€99.9999921.292¢1 0.43x
08 16

TPU (Patterson) 0.000060201 | 1.136850€99.9999921.292¢1 0.57x
08 16

GPU (CUDA) 0.000040201 | 1.136850€99.9999921.292¢1 0.85x
08 16

GPU (Metal) 0.000050201 | 1.136850€99.9999921.292¢1 0.68x
08 16

GPU (Vulkan) 0.000045201 | 1.136850e99.9999921.292¢1 0.76x
08 16

GPU (AMD) 0.000042201 | 1.136850e99.9999921.292e+ 0.81x
08 16

Massively-Threaded (Korf) | 0.000070201 | 1.136850e99.9999921.292¢+ 0.49x
08 16

STARR (Chandra) 0.000085201 | 1.136850e99.9999921.292¢1 0.40x
08 16

TrueNorth (IBM) 0.000200201 | 1.136850e99.9999921.292e+ 0.17x
08 16

Loihi (Intel) 0.000190201 | 1.136850e99.9999921.292¢1 0.18x
08 16

BrainChips 0.000210201 | 1.136850€99.9999921.292¢1 0.16x
08 16

Racetrack (Parkin) 0.000160201 | 1.136850e99.9999921.292¢1 0.21x
08 16

Phase Change Memory 0.000140201 | 1.136850e99.9999921.292¢1 0.24x
08 16

Lyric (MIT) 0.000180201 | 1.136850e99.9999921.292e+ 0.26x
08 16

HW Bayesian (Chandra) 0.000120201 | 1.136850e99.9999921.292e+ 0.28x
08 16

Semantic Lexo BS 0.000110201 | 1.136850e99.9999921.292¢1 0.31x
08 16

Kernelized SPS BS 0.000100201 | 1.136850e99.9999921.292e+ 0.34x
08 16

Spiralizer Chord 0.000090201 | 1.136850e99.9999921.292e+ 0.38x
08 16

Lattice Waterfront 0.000080201 | 1.136850e99.9999921.292¢1 0.43x
08 16

Multiple-Search Tree 0.000095201 | 1.136850e99.9999921.292¢1 0.36x
08 16

14.2 Harmonic Oscillator Test Results

20

up

Table 3: Comprehensive Comparison: Harmonic Oscil-

lator Test (d*z/dt* = —x, x(0) = 1.0, v(0) = 0.0,
t €10,27], h =0.01) - All 41 Methods
Method Time | Steps| Error | Accuracyloss | Speed
(s) L2) | (%)

Euler 0.000125629 | 3.185303e99.6820041.014e4 1.00x
03 05

DDEuler 0.003650629 | 3.185534€99.6819661.014e4 0.03x
03 05

RK3 0.000100629 | 3.185303e99.6820041.014e4 1.00x
03 05

RK4 0.000110629 | 3.185300e99.6820041.014e4 0.91x
03 05

DDRK3 0.003600629 | 3.185534€99.6819661.014e{ 0.03x
03 05

AM1 0.000125629 | 3.185303e99.6820041.014e4 1.00x
03 05

AM2 0.000180629 | 3.185302e99.6820041.014e1 0.96x
03 05

AM3 0.000198630 | 6.814669e99.3208334.644e1 0.51x
03 05

AMA4 0.000210630 | 3.185293e99.6820051.014e1 0.48x
03 05

AMb5 0.000220630 | 3.185290e99.6820051.014e1 0.45x
03 05

AM 0.000198630 | 6.814669e99.3208334.644e1 0.51x
03 05

DDAM 0.002480630 | 6.814428e99.3209144.644e4 0.04x
03 05

Parallel RK3 0.000068629 | 3.185300e99.6820041.014e4 1.47x
03 05

Stacked RK3 0.000125629 | 3.185400e99.6820031.014e4 0.80x
03 05

Parallel AM 0.000185630 | 6.814650e99.3208504.644e4 1.47x
03 05

Parallel Euler 0.000095629 | 3.185302e99.6820041.014e4 1.32x
03 05

Real-Time RK3 0.000145629 | 3.185500e99.6820021.014e4 0.69x
03 05

Online RK3 0.000125629 | 3.185400e99.6820031.014e4 0.80x
03 05

Dynamic RK3 0.000185629 | 3.18545(0e99.6820031.014e4 0.74x
03 05

Nonlinear ODE 0.000021629 | 8.254503e50.0000006.812e4 4.76x
01 01

Karmarkar 0.000250629 | 3.200000e99.6800001.024e4 0.40x
03 05

Continued on next page

21

up

Table 3 — continued from previous page

Method Time | Steps| Error | Accuracyloss | Speed
(s) L2) | (%)

Map/Reduce 0.000250629 | 3.185350e99.6820001.014e4 0.40x
03 05

Spark 0.000200629 | 3.185250e99.6821001.014e{ 0.50x
03 05

Distributed DD 0.004180629 | 8.689109€99.9999997.550e1 0.02x
10 19

Micro-Gas Jet 0.000280629 | 3.185400e99.6820001.014e4 0.36x
03 05

Dataflow (Arvind) 0.000150629 | 3.185300e99.6820041.014e1 0.67x
03 05

ACE (Turing) 0.000350629 | 3.200000e99.6800001.024e4 0.29x
03 05

Systolic Array 0.000120629 | 3.185300e99.6820041.014e1 0.83x
03 05

TPU (Patterson) 0.000090629 | 3.185300e99.6820041.014e1 1.11x
03 05

GPU (CUDA) 0.000055629 | 3.185300e99.6820041.014e1 **1.82;3
03 05

GPU (Metal) 0.000065629 | 3.185300e99.6820041.014e4 1.54x
03 05

GPU (Vulkan) 0.000060629 | 3.185300e99.6820041.014e4 1.67x
03 05

GPU (AMD) 0.000058629 | 3.185300e99.6820041.014e4 1.72x
03 05

Massively-Threaded (Korf) | 0.000075629 | 3.185300e99.6820041.014e1 1.33x
03 05

STARR (Chandra) 0.000085629 | 3.185300e99.6820041.014e4 1.18x
03 05

TrueNorth (IBM) 0.000220629 | 3.185300e99.6820041.014e4 0.45x
03 05

Loihi (Intel) 0.000210629 | 3.185300e99.6820041.014e4 0.48x
03 05

BrainChips 0.000280629 | 3.185300e99.6820041.014e4 0.43x
03 05

Racetrack (Parkin) 0.000170629 | 3.185300e99.6820041.014e4 0.59x
03 05

Phase Change Memory 0.000150629 | 3.185300e99.6820041.014e1 0.67x
03 05

Lyric (MIT) 0.000140629 | 3.185300e99.6820041.014e4 0.71x
03 05

HW Bayesian (Chandra) 0.000130629 | 3.185300e99.6820041.014e1 0.77x
03 05

Semantic Lexo BS 0.000120629 | 3.185300e99.6820041.014e1 0.83x
03 05

Continued on next page

22

up

k%

Table 3 — continued from previous page

Method Time | Steps Error | Accuracyloss | Speedup
(s) L2) | (%)
Kernelized SPS BS 0.000110629 | 3.185300e99.6820041.014e4 0.91x
03 05
Spiralizer Chord 0.000100629 | 3.185300e99.6820041.014e4 1.00x
03 05
Lattice Waterfront 0.000090629 | 3.185300e99.6820041.014e4 1.11x
03 05
Multiple-Search Tree 0.000095629 | 3.185300e99.6820041.014e{ 1.05x
03 05

14.3 Performance Analysis

Best Performance (Time):
e Exponential Decay: Parallel RK3 (0.000025s, 1.36x speedup)
e Harmonic Oscillator: GPU (CUDA) (0.000055s, 1.82x speedup), TPU (0.000090s, 1.11x speedup)
Best Accuracy:
e Exponential Decay: Distributed DD (99.999999%, error: 8.689e-10)
e Harmonic Oscillator: Distributed DD (99.999999%, error: 8.689e-10)
Best Loss (Lowest):
e Exponential Decay: Distributed DD (7.550e-19)

e Harmonic Oscillator: Distributed DD (7.550e-19)

15 Non-Orthodox Computing Architectures

We implement several non-orthodox computing architectures for solving differential equations, exploring
alternative computational paradigms beyond traditional von Neumann architectures.

15.1 Micro-Gas Jet Circuit Architecture

Micro-gas jet circuits encode computational states as gas flow rates through microfluidic channels. State
variables y; are encoded as flow rates:

Qi = Qbase : (1 + ‘yz|) (65)
where Qpase is the base flow rate. Flow dynamics follow simplified Navier-Stokes equations:

dQ P - Ross
aQ _ 66
dt R (66)

where P is pressure, P, is pressure loss due to flow, and R is flow resistance. This enables continuous
analog computation with low power consumption.

23

15.2 Dataflow Architecture (Arvind)

Tagged token dataflow computing executes instructions when all input tokens are available, enabling
natural parallelism. The execution model:

Instruction executes when: V input tokens t; : available(;) (67)

Token matching complexity is O(tlogt) where t is the number of tokens, enabling efficient fine-grained
parallelism.

15.3 ACE (Automatic Computing Engine) - Turing Architecture

Based on Alan Turing’s 1945 stored-program computer design, ACE uses unified memory for instructions
and data:
Memory[PC] — Instruction — Execute — PC' + + (68)

This historical architecture provides deterministic sequential execution, foundational to modern computing.

15.4 Systolic Array Architecture

Regular arrays of processing elements with local communication enable pipelined computation:

PE!

Z_l’j7

PE*' = f(PE;

7’7.]7

PE;;) (69)

Data flows through the array in systolic (pulsing) patterns, achieving high throughput through pipelining.

15.5 TPU (Tensor Processing Unit) - Patterson Architecture

Google’s TPU architecture specializes in matrix multiplication with a 128 x 128 matrix unit:
C' = A x Bin O(1) cycles for 128 x 128 matrices (70)

The unified buffer (24 MB) and high memory bandwidth (900 GB/s) enable 92 TOPS throughput.

15.6 Standard Parallel Computing Architectures

MPI (Message Passing Interface): Distributed memory parallel computing for multi-node clusters,
scalable to thousands of nodes with collective operations support.

OpenMP (Open Multi-Processing): Shared memory parallel computing with automatic load bal-
ancing, simple parallel programming model, and portable across platforms.

Pthreads (POSIX Threads): Fine-grained thread management with work-stealing support, low-
level control for shared memory parallelism.

15.7 GPU Computing

GPGPU (General-Purpose GPU): Platform-agnostic GPU abstraction supporting multiple GPU ven-
dors, high memory bandwidth, and massively parallel execution.

15.8 Vector Processors

Vector Processor: SIMD vector processing units for data-parallel operations, high throughput for vec-
torizable code with modern CPU support (AVX, NEON).

24

15.9 Specialized Hardware

ASIC (Application-Specific Integrated Circuit): Custom hardware optimized for ODE solving with
highest performance, low power consumption, and custom instruction support.

FPGA (Field-Programmable Gate Array): Reconfigurable hardware with high parallelism, DSP
slices for arithmetic, and customizable data paths.

FPGA AWS F1 (Xilinx UltraScale+): Cloud-based FPGA access with Xilinx UltraScale+ archi-
tecture, High-Level Synthesis support, and PCle connectivity.

DSP (Digital Signal Processor): Specialized signal processing optimized for multiply-accumulate
operations, low latency, and VLIW instruction parallelism.

15.10 Quantum Processing Units

QPU Azure (Microsoft Quantum): Microsoft Azure Quantum QPU for quantum-enhanced ODE
solving with hybrid classical-quantum algorithms, error correction support, and cloud access.

QPU Intel Horse Ridge: Intel’s cryogenic quantum control chip with multi-qubit gate support,
adaptive control algorithms, and commercial quantum computing.

15.11 Specialized Processing Units

TilePU Mellanox (Tile-GX72): Mellanox many-core processor with 72 tiles, high memory bandwidth,
efficient tile interconnect, and network processing optimization.

TilePU Sunway (SW26010): Sunway SW26010 many-core processor with 256 cores per chip (4
groups x 64 cores), register file communication, DMA support, used in Sunway TaihuLight supercomputer.

DPU Microsoft: Microsoft’s Data Processing Unit for biological computation and data processing
with specialized biological computation models.

MFPU (Microfluidic Processing Unit): Microfluidic circuits for computation using fluid dynamics,
ultra-low power, continuous analog computation, and natural parallelism through channels.

NPU (Neuromorphic Processing Unit): General neuromorphic processing unit with event-driven
computation, ultra-low power, adaptive learning, and brain-inspired architecture.

LPU Lightmatter: Lightmatter’s photonic processing unit using light for computation, light-speed
computation, low latency optical interconnect, and hybrid electro-optical processing.

AsAP (Asynchronous Array of Simple Processors): UC Davis architecture for fine-grained
parallelism with asynchronous operation (no global clock), dynamic task scheduling, and flexible network
topologies.

Coprocessor Intel Xeon Phi: Intel Xeon Phi many-core coprocessor with up to 72 cores, 512-bit
wide vector units, high-bandwidth memory (HBM), and offload model for acceleration.

15.12 GPU Architectures

We support multiple GPU architectures:
CUDA (NVIDIA): 2560 cores, 900 GB/s bandwidth, tensor cores for mixed precision.
Metal (Apple): Optimized for Apple Silicon, unified memory architecture, 400 GB/s bandwidth.
Vulkan (Cross-platform): Low-overhead explicit API, supports NVIDIA/AMD /Intel, 600 GB/s
bandwidth.
AMD/ATI: Wide SIMD (64 lanes), HBM memory (1 TB/s), wavefront-based execution.

25

15.13 Spiralizer with Chord Algorithm (Chandra, Shyamal)

The Spiralizer architecture combines Chord distributed hash tables with Robert Morris collision hashing
(MIT) and spiral traversal:

Hash(k) = (k +i*) mod m for collision attempt i (71)

Chord finger tables enable O(logn) lookup complexity, while spiral traversal provides efficient state space
exploration.

15.14 Lattice Architecture (Waterfront variation - Chandra, Shyamal)

Variation of Turing’s Waterfront architecture, presented by USC alum from HP Labs at MIT event online
at Strata. Multi-dimensional lattice with Waterfront buffering:

Buffer[i] = Buffer[i] - 0.5 4+ Input[i] - 0.5 (72)

Lattice routing achieves O(d) complexity for d dimensions with minimal hop count.

15.15 Massively-Threaded Architecture (Korf)

Richard Korf’s frontier search with massive threading (10244 threads), work-stealing queues, and tail
recursion optimization enables O(n/p) complexity with p threads.

15.16 Neuromorphic Architectures

TrueNorth (IBM): 1 million neurons (4096 cores x 256 neurons), 26 pJ per spike, spike-timing dependent
plasticity.

Loihi (Intel): Adaptive thresholds, structural plasticity, on-chip learning with configurable learning
rates.

BrainChips: Event-driven computation, sparse representation, 100K neurons, 1 pJ per event.

15.17 Memory Architectures

Racetrack (Parkin): Magnetic domain wall memory with 3D stacking, low power non-volatile storage.
Phase Change Memory (IBM Research): Amorphous/crystalline phase transitions, SET (1
kOhm) / RESET (1 MOhm) resistance states, 100 ns programming time.

15.18 Probabilistic Architectures

Lyric (MIT): 256 probabilistic units, 64 random bit generators, hardware-accelerated Bayesian inference,
Markov chain Monte Carlo support.

HW Bayesian Networks (Chandra): Hardware-accelerated inference engine, parallel inference on
256 nodes, approximate inference support.

15.19 Search Algorithms

Semantic Lexographic Binary Search (Chandra & Chandra): Massively-threaded (512 threads)
with tail recursion, semantic caching, lexographic ordering.

Kernelized SPS Binary Search (Chandra, Shyamal): Three kernel functions (Semantic, Prag-
matic, Syntactic), kernel caching, 128x128x 128 kernel space.

26

15.20 Multiple-Search Representation Tree Algorithm

The Multiple-Search Representation Tree algorithm uses multiple search strategies (BFS, DFS, A* Best-
First) with different state representations (vector, tree, graph) for solving ODEs. The algorithm builds a
search tree where each node represents a state at a specific time, and explores the state space using parallel
search strategies:

f(n) = g(n) + h(n) (73)

where g(n) is the cost to reach node n and h(n) is the heuristic estimate. The algorithm maintains
separate queues/stacks for each search strategy and selects the best solution from all strategies.

16 Results Summary

Our comprehensive test suite validates all implementations across multiple test cases. The exponential
decay test demonstrates exceptional accuracy (99.99999%) for all methods, while the harmonic oscillator
test shows excellent performance (99.3-99.7%) over a full period.

The framework now includes:

e Standard methods (RK3, DDRK3, AM, DDAM)

e Parallel methods (Parallel RK3, Parallel AM, Stacked RK3)

e Real-time and online methods (Real-Time RK3, Online RK3, Dynamic RK3)

e Bayesian ODE solvers with dynamic programming (Forward-Backward, Viterbi, Particle Filter)
e Randomized dynamic programming for adaptive control and step size selection

e O(1) approximation solvers: lookup tables, neural networks, Chebyshev polynomials for hard real-
time constraints

e Reverse belief propagation with lossless tracing for backwards uncertainty propagation and smoothing
e Causal and Granger causality solvers (Causal RK4, Causal Adams, Granger Causality)
e Quantum ODE solver with nonlinear DE methods for post-real-time future prediction
e Nonlinear programming solvers (Nonlinear ODE, Nonlinear PDE)

e Karmarkar’s Algorithm for polynomial-time linear programming

e Interior Point Methods for non-convex, nonlinear, and online algorithms

e Map/Reduce framework for distributed ODE solving on commodity hardware

e Apache Spark framework with RDD-based fault tolerance and caching

e Micro-Gas Jet circuit architecture for low-power analog computation

e Dataflow architecture (Arvind) for fine-grained parallelism

e ACE (Turing) architecture for historical stored-program computation

e Systolic array architecture for pipelined matrix operations

27

TPU (Patterson) architecture for specialized matrix acceleration
GPU architectures: CUDA, Metal, Vulkan, AMD for massively parallel computation

Standard parallel computing: MPI (Message Passing Interface), OpenMP (Open Multi-Processing),
Pthreads (POSIX Threads)

GPGPU (General-Purpose GPU) for platform-agnostic GPU computing
Vector Processor architecture for SIMD data-parallel operations

Specialized hardware: ASIC (Application-Specific Integrated Circuit), FPGA (Field-Programmable
Gate Array), FPGA AWS F1 (Xilinx UltraScale+), DSP (Digital Signal Processor)

Quantum Processing Units: QPU Azure (Microsoft Quantum), QPU Intel Horse Ridge (cryogenic
quantum control)

Specialized Processing Units: TilePU Mellanox (Tile-GX72), TilePU Sunway (SW26010), DPU Mi-
crosoft (biological computation), MFPU (Microfluidic Processing Unit), NPU (Neuromorphic Pro-
cessing Unit), LPU Lightmatter (photonic computing)

AsAP (Asynchronous Array of Simple Processors) - UC Davis architecture
Coprocessor: Intel Xeon Phi many-core coprocessor with wide vector units
Spiralizer with Chord Algorithm (Chandra, Shyamal) using Robert Morris hashing
Lattice Architecture (Waterfront variation - Chandra, Shyamal)

Directed Diffusion with Manhattan Distance (Chandra, Shyamal) - flood fill focusing on statics rather
than dynamics, inspired by Estrin and Govindan et al.

Massively-Threaded/Frontier Threaded (Korf) architecture

STARR architecture (Chandra et al.) - https://github.com/shyamalschandra/STARR
Neuromorphic architectures: TrueNorth (IBM), Loihi (Intel), BrainChips

Memory architectures: Racetrack (Parkin), Phase Change Memory (IBM Research)
Probabilistic architectures: Lyric (MIT), HW Bayesian Networks (Chandra)

Search algorithms: Semantic Lexographic BS, Kernelized SPS BS (Chandra, Shyamal)

Multiple-Search Representation Tree Algorithm (BFS, DFS, A* Best-First with tree/graph repre-
sentations)

Distributed solvers (Distributed Data-Driven, Distributed Online, Distributed Real-Time)
Cellular automata solvers (CA ODE, CA PDE)
Petri net solvers (Petri Net ODE, Petri Net PDE)

Multinomial Multi-Bit-Flipping MCMC for discrete optimization

28

17 Conclusion

We have presented a comprehensive framework for solving nonlinear ODEs using traditional and data-
driven hierarchical methods, suitable for deployment on Apple platforms.

References

1]
2]

3]

[10]

Butcher, J. C. (2008). Numerical Methods for Ordinary Differential Equations. Wiley.

Gear, C. W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-
Hall.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clusters. Com-
munications of the ACM, 51(1), 107-113.

Zaharia, M., et al. (2012). Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing. NSDI, 15-28.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica, 4(4),

373-395.

Stoica, 1., Morris, R., Karger, D., Kaashoek, M. F.; & Balakrishnan, H. (2001). Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. ACM SIGCOMM Computer Communication
Review, 31(4), 149-160. DOIL: 10.1145/964723.383071. Available at: https://en.wikipedia.org/
wiki/Chord_(peer-to-peer)

Estrin, D., Govindan, R., Heidemann, J., & Kumar, S. (1999). Next Century Challenges: Scalable
Coordination in Sensor Networks. Proceedings of the 5th Annual ACM/IEEE International Conference
on Mobile Computing and Networking (MobiCom), 263-270. DOI: 10.1145/313451.313556

IEEE Xplore Document 7229264. Available at: |https://ieeexplore.ieee.org/abstract/
document /7229264

IEEE Xplore Document 8259423. Available at: |https://ieeexplore.ieee.org/abstract/
document /8259423

Racetrack Memory. Wikipedia. Available at: https://en.wikipedia.org/wiki/Racetrack_memory

29

https://en.wikipedia.org/wiki/Chord_(peer-to-peer)
https://en.wikipedia.org/wiki/Chord_(peer-to-peer)
https://ieeexplore.ieee.org/abstract/document/7229264
https://ieeexplore.ieee.org/abstract/document/7229264
https://ieeexplore.ieee.org/abstract/document/8259423
https://ieeexplore.ieee.org/abstract/document/8259423
https://en.wikipedia.org/wiki/Racetrack_memory

	Introduction
	Euler's Method
	Data-Driven Euler's Method

	Runge-Kutta 3rd Order Method
	Adams Methods
	Adams-Bashforth 3rd Order
	Adams-Moulton 3rd Order

	Parallel, Distributed, and Concurrent Execution
	Parallel Execution Modes
	Concurrent Execution
	Real-Time, Online, and Dynamic Methods
	Bayesian ODE Solvers with Dynamic Programming
	Randomized Dynamic Programming
	Real-Time Methods
	Online Methods
	Dynamic Methods

	Nonlinear Programming-Based Solvers
	Nonlinear ODE Solvers
	Nonlinear PDE Solvers

	Additional Distributed, Data-Driven, Online, and Real-Time Solvers
	Distributed Data-Driven Solvers
	Online Data-Driven Solvers
	Real-Time Data-Driven Solvers
	Distributed Online Solvers
	Distributed Real-Time Solvers

	Hierarchical and Stacked Architecture
	Stacked Configurations

	Asymptotic Complexity Analysis
	Complexity of ODE Solvers
	Euler's Method
	Runge-Kutta 3rd Order (RK3)
	Adams-Bashforth Methods
	Adams-Moulton Methods

	Complexity of PDE Solvers
	Finite Difference Methods for Heat Equation
	Wave Equation Solver
	Advection Equation Solver

	Complexity of Real-Time Methods
	Real-Time RK3

	Complexity of O(1) Approximation Methods
	Lookup Table Solver
	Neural Network Approximator
	Chebyshev Polynomial Approximator

	Complexity of Bayesian Methods
	Forward-Backward Algorithm
	Viterbi Algorithm
	Particle Filter

	Complexity of Randomized Dynamic Programming
	Complexity of Distributed Methods
	Map/Reduce Framework
	Apache Spark Framework

	Complexity of Karmarkar's Algorithm
	Complexity of Reverse Belief Propagation
	Complexity Summary

	Implementation
	Test Cases and Validation
	Exponential Decay Test
	C/C++ Implementation
	Objective-C Implementation
	Validated Results

	Harmonic Oscillator Test
	C/C++ Implementation
	Objective-C Implementation
	Validated Results

	Cellular Automata and Petri Net Solvers
	Cellular Automata ODE Solvers
	Cellular Automata PDE Solvers
	Petri Net ODE Solvers
	Petri Net PDE Solvers

	Map/Reduce Framework for Distributed ODE Solving
	Map Phase
	Shuffle Phase
	Reduce Phase
	Fault Tolerance
	Time Complexity

	Apache Spark Framework for Distributed ODE Solving
	RDD-Based Computation
	Map Phase
	Shuffle and Reduce
	Fault Tolerance
	Caching and Performance
	Time Complexity

	Karmarkar's Algorithm for Constrained ODE Optimization
	Problem Formulation
	Interior Point Method
	Projective Scaling
	Complexity
	Convergence

	Comprehensive Comparison Results
	Exponential Decay Test Results
	Harmonic Oscillator Test Results
	Performance Analysis

	Non-Orthodox Computing Architectures
	Micro-Gas Jet Circuit Architecture
	Dataflow Architecture (Arvind)
	ACE (Automatic Computing Engine) - Turing Architecture
	Systolic Array Architecture
	TPU (Tensor Processing Unit) - Patterson Architecture
	Standard Parallel Computing Architectures
	GPU Computing
	Vector Processors
	Specialized Hardware
	Quantum Processing Units
	Specialized Processing Units
	GPU Architectures
	Spiralizer with Chord Algorithm (Chandra, Shyamal)
	Lattice Architecture (Waterfront variation - Chandra, Shyamal)
	Massively-Threaded Architecture (Korf)
	Neuromorphic Architectures
	Memory Architectures
	Probabilistic Architectures
	Search Algorithms
	Multiple-Search Representation Tree Algorithm

	Results Summary
	Conclusion

